Report of Findings and First Half 2005 Groundwater Monitoring Report

PALCO Company Garage Scotia, California Case No. 12272

Prepared for:

PALCO

Reference: 089097.120

May 31, 2005

Ms. Leanne Schroyer Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA 95501

Subject: Report of Findings and First Half 2005 Groundwater Monitoring Report

PALCO Company Garage, Scotia, California; Case No. 12272

Dear Ms. Schroyer:

This report is presented by SHN Consulting Engineers & Geologists, Inc. (SHN), on behalf and with the approval of PALCO, and includes the results of additional groundwater monitoring well installation and groundwater monitoring activities conducted at the PALCO Company Garage Underground Storage Tank investigation, for the reporting period March 2004 to March 2005.

Please don't hesitate to contact me if you have any questions.

Sincerely,

SHN Consulting Engineers & Geologists, Inc.

Martin E. Lay, P.E. Project Manager

MEL/RMR:lms

Enclosure: Report

copy w/encl: Robert Vogt, PALCO

Kasey Ashley, RWQCB, North Coast Region

Reference: 089097.120

Report of Findings and First Half 2005 Groundwater Monitoring Report

PALCO Company Garage Scotia, California Case No. 12272

Prepared for:

PALCO

Prepared by:

Consulting Engineers & Geologists, Inc. 812 W. Wabash Eureka, CA 95501-2138 707/441-8855

May 2005

QA/QC: MEL___

Table of Contents

			Page
1.0	Intro	oduction	
	1.1	Vicinity Information	
	1.2	Site History	
	1.3	Geology and Hydrology	3
	1.4	Objective and Scope of Work	3
2.0	Field	d Activities	3
	2.1	Soil Boring	3
	2.2	Monitoring Well Installation	
	2.3	Monitoring Well Development	
	2.4	Monitoring Well Sampling	
	2.5	Laboratory Analysis	5
	2.6	Equipment Decontamination Procedures	5
	2.7	Investigation-Derived Waste Management	6
3.0	Inve	estigation Results	6
4.0	Grou	undwater Monitoring Results	6
	4.1	Hydrogeology	6
	4.2	Groundwater Analytical Results	
	4.3	Natural Attenuation Parameters	
5.0	Disc	cussion and Recommendations	10
6.0	Refe	erences Cited	10

Appendices

- A. **Well Installation Field Notes**
- **Groundwater Monitoring Field Sheets** B.
- C. **Laboratory Analytical Reports**
- D. Historic Monitoring Data

List of Illustrations

Tables		Page
1.	Soil Analytical Data, March 4, 2005	6
2.	Groundwater Elevations, March 23, 2005	7
3.	Groundwater Analytical Results, March 23 & 24, 2005	8
4.	Volatile Organic Compound Analytical Results, March 24, 2005	
5.	CAM 17 Metals in Groundwater, March 24, 2005	9
6.	Additional Groundwater Analytical Parameters, March 24, 2005	
7.	DO, DCO ₂ , and ORP Measurement Results, March 23, 2005	
Figures		Follows Page
1.	Site Location Map	1
2.	Site Plan	
3.	Groundwater Contours, March 23, 2005	6
4.	Summary of Groundwater Analytical Results, March 23 & 24, 2005	

Abbreviations and Acronyms

denotes a value that is "less than" the method detection limit.

mg/L milligrams per Liter

mV millivolts

ppm parts per million
ug/g micrograms per gram
ug/L micrograms per Liter
ug/ml micrograms per milliliter

Ag Silver

AP Assessor's Parcel Number

As Arsenic

ASTM American Standard Test Method

Ba Barium Be Beryllium

BTEX Benzene, Toluene, Ethylbenzene, and total Xylenes

Cd Cadmium Co Cobalt

COD Chemical Oxygen Demand

Cr Chromium Cu Copper

DCO₂ Dissolved Carbon Dioxide

DIPE Diisopropyl Ether DO Dissolved Oxygen

DOT Department of Transportation

EC Electrical Conductivity

EPA United States Environmental Protection Agency

ETBE Ethyl Tertiary-Butyl Ether

Fe Iron

HB&M Humboldt Base and Meridian

HCDEH Humboldt County Division of Environmental Health

Hg Mercury
Mn Manganese
Mo Molybdenum
MSL Mean Sea Level

MTBE Methyl Tertiary-Butyl Ether

MW-# Monitoring Well-# NA Not Analyzed

NAVD88 North American Vertical Datum 1988

Ni Nickel

ORP Oxidation-Reduction Potential

Pb Lead

PVC Polyvinyl Chloride
RAP Remedial Action Plan
RAWP Remedial Action Work Plan
ROWD Report of Waste Discharge

RWQCB California Regional Water Quality Control Board, North Coast Region

Abbreviations and Acronyms, Continued

S-# UST-# Sb Antimony Se Selenium

SHN Consulting Engineers & Geologists, Inc.

TAME Tertiary-Amyl Methyl Ether
TBA Tertiary-Butyl Alcohol
TDS Total Dissolved Solids

Tl Thallium

TPHD Total Petroleum Hydrocarbons as Diesel
TPHG Total Petroleum Hydrocarbons as Gasoline
TPHMO Total Petroleum Hydrocarbons as Motor Oil

USCS Unified Soil Classification System USTs Underground Storage Tanks

V Vanadium

VOCs Volatile Organic Compounds

Zn Zinc

1.0 Introduction

SHN Consulting Engineers & Geologists, Inc. (SHN) was retained by PALCO to conduct an additional subsurface investigation at the PALCO Company Garage in Scotia, California. This report describes the field activities for the monitoring well installation and subsequent groundwater monitoring and sampling at the site. This work was requested by the Humboldt County Division of Environmental Health (HCDEH) and the California Regional Water Quality Control Board, North Coast Region (RWQCB). This report is the culmination of the work described and agreed upon by representatives of SHN, the HCDEH, and the RWQCB.

The information in this report is presented in 6 sections. This section serves as an introduction and describes the site history and conditions, and discusses the objectives of the investigation. Section 2.0 describes the field program for the monitoring well installation, well development, and sampling. Section 3.0 describes the results of the soil sampling. Section 4.0 presents the results of the groundwater monitoring, and Section 5.0 presents a discussion of the findings and provides recommendations. Section 6.0 lists cited references.

1.1 Vicinity Information

The PALCO Company Garage site is located at the northeastern corner of the intersection of Main and Bridge Streets, in the town of Scotia, Humboldt County, California (Assessor's Parcel Number [APN] 205-351-16). The Company Garage (Case No. 12272) and former Service Station (Ademar's Chevron, Case No. 12273) are part of the same facility. The entire site lies within the northeast ¼ of Section 7, Township 1 North, Range 1 East, Humboldt Base and Meridian (HB&M) (Figure 1).

1.2 Site History

The existing Company Garage building was historically utilized for vehicle and equipment service and repair. Five Underground Storage Tanks (USTs) were formerly located at the facility (Figure 2). A 12,000-gallon unleaded gasoline UST (S-5) was installed in 1974; a 1,500-gallon diesel UST (S-6) and a 1,000-gallon leaded gasoline UST (S-15) were installed in 1959; a 1,000-gallon premium unleaded gasoline UST (S-14) was installed in 1972; and, a 1,000-gallon unleaded gasoline UST (S-16) was installed at the facility in 1975.

On June 6, 1991, the 1,000-gallon leaded gasoline UST (S-14) was removed under permit from the southeast corner of the Company Garage site. On July 27, 1998, SHN and the HCDEH observed the removal of the remaining USTs (S-5, S-6, S-15, and S-16). Minimal over-excavation of soil was completed in the northernmost tank pit, which previously contained the 12,000-gallon UST (S-5). Over-excavation of contaminated soil from around the southern-most tank pits was also conducted. The tank pit locations were subsequently backfilled, and the surface was paved with asphalt concrete as directed by PALCO. Approximately 120 cubic yards of excavated soil were temporarily stockpiled on site, under permit, and in November 1999, were transported under manifest to Ben's Truck and Equipment Incorporated, located in Red Bluff, California, for disposal by bioremediation.

SHN conducted an initial subsurface soil and groundwater investigation at the Company Garage site in December 1999, which included the advancement of 12 exploratory borings (including 6 temporary well points using direct push methodology), and the installation of three, 2-inch monitoring wells (MW-1, MW-2, and MW-3). Soil and groundwater samples were collected, and analyzed, and the results of the investigation were reported in our December 1999 Subsurface Investigation Report of Findings (SHN, 1999).

The HCDEH responded, by letter dated March 23, 2000, to SHN's December1999 report of findings. One item requested by the HCDEH was that PALCO submit a work plan to further delineate and characterize the extent of soil and groundwater contamination at the site. SHN, on behalf of PALCO, submitted the requested work plan to the HCDEH on June 12, 2000. PALCO received formal written comments relative to the work plan from the HCDEH in a letter dated August 10, 2000.

PALCO, in conformance with the modified June 12, 2000, work plan and under permit from the HCDEH, authorized SHN to complete the additional subsurface investigation and the installation of a new groundwater-monitoring well (MW-4), which occurred on November 8 and 9, 2000. Soil and groundwater samples were collected, analyzed, and the results were reported in our November 2000 Site Investigation Report of Findings (SHN, January 2001).

On May 3, 2001, representatives from PALCO, HCDEH, and SHN met to discuss the findings of the November 2000 subsurface investigation, clarify outstanding contaminant fate issues that were previously raised by HCDEH, and formulate a course of action for ongoing site investigation and monitoring. SHN submitted a meeting memorandum of understanding dated May 9, 2001, which was acknowledged by the HCDEH in a letter of May 15, 2001. The consensus that was reached at the meeting was to continue monitoring the existing wells for an additional dry and wet season, and, utilizing the data collected, determine conditions for site closure or further investigation.

PALCO and HCDEH representatives attended an additional meeting with SHN on March 7, 2002, for the purpose of discussing the year 2001 monitoring data and requirements, and alternatives for expediting site closure. The meeting minutes were submitted by SHN in an April 3, 2002 letter to the HCDEH. On April 29, 2002, SHN submitted a letter to the HCDEH, addressing the five tasks that were outlined in our April 3, 2002 letter.

By letter dated October 24, 2002, the RWQCB concurred with SHN's September 25, 2002 request to reduce the monitoring well sampling frequency and reporting to annual in March.

On March 6, 2003, PALCO submitted a Remedial Action Feasibility Study to the HCDEH for their review and comment. HCDEH concurred, by letter dated April 14, 2003, with the feasibility proposal of using hydrogen peroxide for the remedial action, and requests a Remedial Action Plan (RAP).

On June 9, 2003, PALCO submitted the RAP. HCDEH conditionally concurred with the RAP by letter dated July 16, 2003, requested clarifications, and authorized the proposed pilot study.

RAP clarification items were submitted by PALCO to HCDEH on September 5, 2003. HCDEH commented on clarification items by letter dated October 9, 2003.

PALCO responded to HCDEH comments by letter dated November 13, 2003. On December 24, 2003, PALCO submitted to HCDEH the project Remedial Action Work Plan (RAWP).

On January 8, 2004, PALCO submitted the application and documents for the project Report of Waste Discharge (ROWD) to the RWQCB.

HCDEH commented on the RAWP by letter dated February 17, 2004. On February 24, 2004, the RWQCB commented by letter to the ROWD. PALCO responded to the RWQCB with Addendum No. 1, dated April 14, 2004, to the ROWD.

On September 23 and 24, 2004, SHN supervised Fisch Environmental of Valley Springs, California in the installation of 12 membrane interface probe borings and five soil borings/temporary well points. Results were presented in the Report of Findings for Additional Site Investigation (SHN, December 2004).

1.3 Geology and Hydrology

The PALCO Company Garage site is located on the south limb of the Eel River syncline on a fluvial terrace, approximately 1,000 feet southeast of the Eel River. Sedimentary deposits underlying the site consist of late Quaternary age alluvium deposited by the Eel River. According to the subsurface exploration logs for the piezometers and borings installed at the site, these deposits consist of medium-stiff to stiff clayey silt, which was moist to very moist and gray to yellowish brown in color.

Depth to groundwater ranges between 3 and 6 feet below grade at the project site. Additionally, a log pond, with a varying water surface elevation of approximately 132 feet above Mean Sea Level (MSL), is located approximately 100 feet northwest of the site. This log pond is presently assumed to act as a hydraulic barrier to groundwater movement from the source area toward downgradient receptors.

1.4 Objective and Scope of Work

The objective of the monitoring well installation was to collect data requested by the HCDEH and the RWQCB in order to further assess current site conditions.

The scope of work in this section is intended to meet the objective of this investigation. As part of this investigation, a soil sample was collected from one newly installed groundwater monitoring well boring (MW-7). Groundwater was sampled from all site-monitoring wells (MW-1 through MW-7).

The scope of work included the following items:

- Install one additional groundwater monitoring well.
- Develop the new monitoring well using surge and purge techniques.
- Perform groundwater monitoring and sampling of all existing and newly installed monitoring wells.
- Survey the new well for location and elevation.
- Prepare this report of findings for the monitoring well installation and groundwatermonitoring event.

2.0 Field Activities

2.1 Soil Boring

On March 4, 2005, SHN supervised Fisch Environmental in the advancement of one soil boring (MW-7) at the Company Garage site. The soil boring was advanced utilizing a truck-mounted Geoprobe® direct-push drill rig. Soil samples were collected with the Geoprobe® Macro-Core sampling system. Continuous core samples were collected. A portion of the core sample collected from immediately above the soil-water interface was prepared and submitted for laboratory analysis. Upon retrieval of the core sample, the selected portion of the sample tube was capped

with Teflon tape and plastic end caps. The remaining core sample was used to prepare a description that was recorded on the boring log field sheet, using the Unified Soil Classification System (USCS) as described in American Standard Test Method (ASTM) D 2488-90.

The soil sample was stored in an iced cooler, and transported to a State of California certified analytical laboratory for chemical analysis. The sample was transported using proper chain-of-custody documentation.

2.2 Monitoring Well Installation

Soil boring MW-7 was overdrilled with 8 ¼-inch diameter hollow stem augers and a groundwater monitoring well was installed in the borehole. The monitoring well was constructed in accordance with California Well Standards Bulletins 74-81 and 74-90.

The monitoring well was constructed using 5 feet of Schedule 40, 2-inch diameter Polyvinyl Chloride (PVC) casing and 10 feet of 0.010 inch-slot PVC screen. The filter pack was extended approximately one foot above the screened interval and consists of 2/12 Monterey sand. Bentonite chips were used as the transition seal and to fill the remainder of the annulus. A locking expansion plug was placed in the wellhead, and a flush-mount Christy box was installed and set in concrete to protect the wellhead.

The new groundwater monitoring well was surveyed for location and elevation under the direction of a California licensed surveyor. Groundwater-monitoring well elevations were referenced to NAVD88 (North American Vertical Datum 1988), to the nearest 0.01-foot.

Field notes, the boring log, and the survey data are included in Appendix A.

2.3 Monitoring Well Development

On March 23, 2004, SHN developed the new monitoring well. Prior to development, the well was checked for the presence of floating product, water level, and total depth. The well was then developed by surge and purge techniques. A surge block was used to surge the entire length of the screened interval, and suspended sediment was removed using a peristaltic pump. At least 5 casing volumes of groundwater were removed using the pump. The well was purged until turbidity was reduced, and physical parameters (pH, electrical conductivity, and temperature) stabilized. Physical parameters were checked after each casing volume of water was removed. Well development field notes are included in Appendix B.

2.4 Monitoring Well Sampling

The newly installed and existing site wells were sampled on March 23 and 24, 2005. Prior to purging, water level measurements were collected from each well. Each well was then checked for the presence of floating product. Water-level measurements were recorded to the nearest hundredth foot and well depth measurements were noted. Equipment that was used in taking water levels and well depth measurements was cleaned between each use, as discussed in Section 3.6. Groundwater monitoring field notes are included in Appendix B.

Each well was purged using new, disposable polyethylene bailers. During purging, Dissolved Oxygen (DO), Dissolved Carbon Dioxide (DCO₂), and the Oxidation-Reduction Potential (ORP) were measured using portable instrumentation. At least three well casing volumes were purged

from each well prior to collection of groundwater samples. Periodic measurements of temperature, pH, and Electrical Conductivity (EC) were made with field equipment during purging to evaluate whether the water samples are representative of the target zone.

Groundwater samples were collected using new disposable polyethylene bailers. Samples were collected in laboratory-supplied bottles, placed in an iced cooler, and handled under proper chain-of-custody procedures. All purge water and decontamination water was placed in Department of Transportation (DOT)-approved and labeled DOT 17 E/H, 55-gallon drums and handled in accordance with procedures described in Section 2.9.

2.5 Laboratory Analysis

The soil sample was analyzed for:

- Total Petroleum Hydrocarbons as Motor Oil (TPHMO), as Diesel (TPHD), and as Gasoline (TPHG) in general accordance with United States Environmental Protection Agency (EPA) Method No. 8015B.
- Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX), and Methyl Tertiary-Butyl Ether (MTBE) in general accordance with EPA Method No. 8021B.

Groundwater samples were analyzed for:

- TPHD in general accordance with EPA Method No. 8015B.
- TPHG, BTEX, and Fuel Oxygenates in general accordance with EPA Method No. 8260B.

Groundwater samples from MW-7 were also analyzed for:

- TPHMO in general accordance with EPA Method No. 8015B.
- Volatile Organic Compounds (VOCs) in general accordance with EPA Method No. 8260B.
- Dissolved methane in general accordance with Modified RSK-175.
- Chemical Oxygen Demand (COD) in general accordance with EPA Method No. 410.4.
- Total Phosphate Phosphorus in general accordance with EPA Method No. 365.2
- Ammonia Nitrogen in general accordance with EPA Method No. 350.3.
- Alkalinity in general accordance with Standard Method 19th Ed. 2320B.
- Nitrate and Sulfate in general accordance with EPA Method No. 300.0.
- Total Dissolved Solids (TDS) in general accordance with EPA Method No. 160.1.
- CAM 17 metals in general accordance with EPA Method Nos. 200.7, 200.9, and 245.1.

Dissolved methane analyses were performed by Air Toxics of Folsom, California. The rest of the analyses were performed by North Coast Laboratories of Arcata, California.

2.6 Equipment Decontamination Procedures

All soil boring/monitoring well installation, well purging, and sampling equipment was cleaned prior to bringing it on site. All small equipment that required on-site cleaning was cleaned using the triple wash system. The equipment was first washed in a water solution containing Liquinox cleaner, followed by a distilled water rinse, then by a second distilled water rinse.

2.7 Investigation-Derived Waste Management

All solid waste material produced during the drilling was contained in DOT-approved 17 E/H, 55-gallon drums and stored on site. The drum was labeled to designate the contents and the locations from which the material was generated. One drum of soil cuttings was produced. The soil from MW-7 is stored inside the gate near MW-5.

All water produced during the well installation, well development and purging activities was temporarily stored on site in drums or in 5-gallon plastic buckets. The water was then placed into the wastewater collection system for treatment at the Scotia wastewater treatment plant. SHN documented the time, date, and quantity of water disposed. SHN discharged approximately 70 gallons of water into the Scotia wastewater collection system.

3.0 Investigation Results

No petroleum hydrocarbon constituents were detected in the soil sample collected from borehole MW-7. Results are presented in Table 1. Laboratory analytical reports are included in Appendix C.

		Company		Iarch 4, 20 Scotia, Cali				
Sample Location and Depth (feet)	TPHMO ²	TPHD ²	TPHG ²	\mathbf{B}^3	T^3	E ³	X ³	MTBE ³
MW-7 @ 7.5'	<104	<1.0	<1.0	<0.0050	<0.010	<0.0050	< 0.0050	< 0.050

- 1. ug/L: micrograms per gram
- 2. Total Petroleum Hydrocarbons as Motor Oil (TPHMO) and as Diesel (TPHD), and as Gasoline (TPHG) analyzed in general accordance with EPA Method No. 8015B
- 3. Benzene (B), Toluene (T), Ethylbenzene (E), total Xylenes (X), and Methyl Tertiary Butyl Ether (MTBE) analyzed in general accordance with EPA Method No. 8021B
- 4. <: denotes a value that is "less than" the method detection limit

4.0 Groundwater Monitoring Results

4.1 Hydrogeology

Depth-to-groundwater measurements were collected on March 23, 2005. The direction of groundwater flow on March 23, 2005 was to the northwest with an approximate gradient of 0.04. Figure 3 shows groundwater contours on March 23, 2005. Groundwater elevations are presented in Table 1. Historic monitoring data is included in Appendix D.

		lle 2 ions, March 23, 2005 age, Scotia, Californ				
Sample Location	Measuring Point Elevation	Depth-to-Water ²	Groundwater Elevation ¹			
MW-1	142.64	2.97	139.67			
MW-2	137.66	4.96	132.70			
MW-3 138.29 4.63 133.66						
MW-4 139.74 4.37 135.37						
MW-5	136.00	3.92	132.08			
MW-6	146.95	4.87	142.08			
MW-7	140.89	6.23	134.66			
Log Pond Surface	134.49	2.32	132.17			
1. Relative to NAVI	D88 (North American	Vertical Datum 1988)				

4.2 Groundwater Analytical Results

No petroleum hydrocarbons were detected in groundwater samples from MW-2, MW-5, or MW-6. Low to moderate concentrations of petroleum hydrocarbons were detected in groundwater samples from MW-1, MW-3, MW-4, and MW-7 (Table 3). TPHG and benzene concentrations from each impacted well are slightly higher than those detected during the March 2004 groundwater-monitoring event. Low concentrations of VOCs detected in groundwater samples from MW-7 (Table 4) are consistent with a release of gasoline. Laboratory analytical reports are included in Appendix C. Historic monitoring data is included in Appendix D.

Dissolved metals analyses are included in Table 5. Low concentrations of dissolved arsenic and dissolved barium were detected in groundwater from MW-7. High concentrations of dissolved iron and moderate concentrations of dissolved manganese were detected in groundwater from MW-7. The concentrations of dissolved iron and manganese are likely due to biologic reduction of iron and manganese oxides. Additional groundwater analytical results are included in Table 6.

Figure 4 depicts a summary of the March 23 and 24, 2005 groundwater analytical results.

Table 3 Groundwater Analytical Results, March 23 & 24, 2005 PALCO Company Garage, Scotia, California	TPHMO2 TPHD2 TPHG3 B4 T4 E4 X4 MTBE5 DIPE5 ETBE5 TAME5 TBA5	$ m NA^6 = 540^7 = 3,700^8 = 13 = 4.8 = 13 = 6.6 = <1.0^9 = <1.0 = <1.0 = <1.0 = <10 = <10 = <10$	NA <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0	$ \hspace{.05cm} { m NA} \hspace{.05cm} \hspace{.05cm} 550^7 \hspace{.05cm} \hspace{.05cm} 4,600^8 \hspace{.05cm} \hspace{.05cm} 78 \hspace{.05cm} \hspace{.05cm} 15 \hspace{.05cm} \hspace{.05cm} 31 \hspace{.05cm} \hspace{.05cm} 19.6 \hspace{.05cm} \hspace{.05cm} <10 \hspace{.05cm} \hspace{.05cm} <10 \hspace{.05cm} \hspace{.05cm} <10 \hspace{.05cm} \hspace{.05cm} <10 \hspace{.05cm} \hspace{.05cm} <100 \hspace{.05cm} $	$oxed{NA} oxed{NA} oxed{900^7} oxed{13,000^8} oxed{1,100} oxed{73} oxed{150} oxed{73} oxed{150} oxed{73} oxed{8.0} oxed{<1.0} oxed{<1.0} oxed{<1.0} oxed{<1.0} oxed{<1.0} oxed{<1.0} oxed{<32}$	NA <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0	NA <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <10	<170 200^7 $1,500^8$ 3.5 2.6 2.0 3.23 <1.0 <1.0 <1.0 <1.0 <1.0
T: Groundwater Analytical PALCO Company		540^7 3,7008	<50 <50 <0.50	550^{7} $4,600^{8}$	900^7 13,000 8	<50 <50 <0.50	<50 <50 <0.50	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	Sample Location T	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7

liter
per
micrograms
micro
ij
gn
_:

- Total Petroleum Hydrocarbons as Motor Oil (TPHMO) and as Diesel (TPHD) analyzed in general accordance with EPA Method No. 8015B
- Total Petroleum Hydrocarbons as Gasoline (TPHG) analyzed in general accordance with EPA Method No. 8260B -: 2; 8; 4; 3;
- Benzene (B), Toluene (T), Ethylbenzene (E), total Xylenes (X) analyzed in general accordance with EPA Method No. 8260B

 Methyl Tertiary-Butyl Ether (MTBE), Diisopropyl Ether (DIPE), Ethyl Tertiary-Butyl Ether (ETBE), Tertiary-Amyl Methyl Ether (TAME) and Tertiary-Butyl Alcohol (TBA) analyzed in general accordance with EPA Method No. 8260B
 - NA: Not analyzed .7
- Contain some material lighter than diesel; however, some of this material extends into the diesel range of molecular weights. The samples also contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

 Appear to be similar to gasoline but contain peak ratios not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline
 - ∞
- <: Denotes a value that is "less than" the method detection limit.</p> 6

,	Volatile Org PA 2.2-Dichloro- Isopropyl- n-Propyl-	Isopropyl-	Volatile Or P	ganic Compou ALCO Compai	Volatile Organic Compound Analytical Results ¹ , March 24, 2005 PALCO Company Garage, Scotia, California (in ug/L ²) (in ug/L ²) Tertiary-Butyl- 1,2,4- Sec-Bu	sults ¹ , March 2 a, California 1,2,4-	24, 2005	4-Isopropyl-	n-Butyl-	24, 2005 Sec-Butyl- 4-Isopropyl- n-Butyl- 3, 3, 3, 3, 3, 4, 1
Sample Location MW-7		benzene 7.9	benzene 16	1 rimethy benzene < 1 0	benzene 7.9	Irimethyl- benzene <10	benzene	methyl- benzene toluene benzene	benzene	Naphthalene < 2.0

Only compounds that were detected previously at the site are shown. See laboratory analytical reports for the full list of compounds analyzed.

ug/L: micrograms per Liter

c. Denotes a value that is "less than" the method detection limit

-
-
6-4 m
1 3
100
100.4
1 0
~
-

	$\Gamma \Pi^2$:10
	2]	> 0
	Se	<1
	Hg^2	<1.0
	Pb^2	<10
	Zn^2	<20
	\mathbf{V}^2	<10
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
05	Ni^2	<20
Table 5 CAM 17 Metals ¹ in Groundwater, March 24, 2005 PALCO Company Garage, Scotia, California (in ug/L ¹)	Mo^2	30
, March tia, Cal	Mn^2	3,500
dwater ge, Scol (L ¹)	Fe ²	7,600
Table 5 Groundy y Garage, (in ug/L ¹	Cu^2	<10
als¹ in ompan	$C0^2$	<10
17 Met LCO C	Cr^2	<10
CAM PA]	Cd^2	<10
	Be^2	<1.0
	Ba ²	14
	Sb^2	<50
	As^2	40
	Sample Location	MW-7

ug/L: micrograms per Liter
 As: Arsenic, Sb: Antimony, Ba: Barium, Be: Beryllium, Cd: Cadmium, Cr: Chromium, Co; Cobalt, Cu: Copper, Fe: Iron, Mn: Manganese, Mo: Molybdenum, Ni: Nickel, Ag: Silver, V: Vanadium, Zn: Zinc, Pb: Lead, Hg: Mercury, Se: Selenium, Tl: Thallium
 <a href="example-style-right-style-styl

	Total Nitrogen	3.6
	Nitrogen Total Kjeldahl	3.6
	Dissolved Methane (ug/ml) ²	2.7
arch 24, 2005 nia	Total Dissolved Solids (mg/L)	510
meters, M ia, Califor	Sulfate (mg/L)	2.1
Table 6 nalytical Para Garage, Scot	kalinity Nitrate (mg/L)	400 <0.10³
Table 6 al Groundwater Analytical Parameters, Marcl PALCO Company Garage, Scotia, California	Alkalinity Nitrate Sulfate (mg/L) (mg/L)	400
Table 6 Additional Groundwater Analytical Parameters, March 24, 2005 PALCO Company Garage, Scotia, California	Total Phosphate Phosphorous (mg/L)	2.4
	Ammonia Chemical Oxygen Nitrogen Demand (mg/L) ¹ (mg/L)	140
	7	1.5
	Sample Location	MW-7

mg/L: milligrams per Liter ug/ml: micrograms per milliliter <: Denotes a value that is "less than" the method detection limit.

4.3 Natural Attenuation Parameters

Monitoring for indicators of biodegradation was performed on groundwater from site wells during the March 2005 monitoring event. DO and ORP concentrations in monitoring wells MW-1 through MW-5 were decreased when compared to upgradient well MW-6. DCO₂ concentrations in monitoring wells MW-1 through MW-5 were increased when compared to upgradient well MW-6. This information indicates that biodegradation of hydrocarbons is occurring. Measurement results are presented in Table 7. Historic monitoring data is included in Appendix D.

	Tab , and ORP Measure LCO Company Gar	ement Results, Mar	
Sample Location	DO ¹ (ppm) ²	DCO ₂ ³ (ppm)	ORP ⁴ (mV) ⁵
MW-1	0.68	170	-83
MW-2	0.70	160	-48
MW-3	0.91	90	-90
MW-4	0.66	350	-111
MW-5	1.76	50	13
MW-6	0.72	70	108
MW-7	0.72	50	-62

^{1.} DO: Dissolved Oxygen, field measured using portable instrumentation.

5.0 Discussion and Recommendations

Low to moderate concentrations of petroleum hydrocarbons were detected in groundwater from monitoring wells MW-1, MW-3, MW-4, and MW-7, with the highest concentrations in MW-4.

Per the May 12, 2005 letter from the HCDEH, on behalf of PALCO, SHN will perform biannual sampling at the company garage site. Groundwater samples from monitoring wells MW-1 through MW-7 will be analyzed for TPHD, TPHG, BTEX, and 5 fuel oxygenates. The next monitoring and sampling event is scheduled for September 2005.

6.0 References Cited

SHN Consulting Engineers & Geologists, Inc. (2000). December 1999 Subsurface Investigation Report of Findings, PALCO Company Garage, Scotia, CA, HCDEH LOP #12272. Eureka: SHN.

- ---. (2001). November 2000 Site Investigation Report of Findings, PALCO Company Garage, Scotia, CA, HCDEH LOP #12272. Eureka: SHN.
- ---.(2003). Remedial Action Work Plan PALCO Company Garage, Scotia, California; LOP #12272. Eureka: SHN.
- ---.(December 2005). Report of Findings for Additional Site Investigation PALCO Company Garage, Scotia, California; LOP #12272. Eureka: SHN.

^{2.} ppm: Measurement concentration, in parts per million.

^{3.} DCO2: Dissolved Carbon Dioxide, field measured using a field test kit.

^{4.} ORP: Oxidation-Reduction Potential measured using portable instrumentation.

^{5.} mV: millivolts

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash * Eureka, CA 95501-2138 * 707/441-8855 * FAX: 707/441-8877 * hninto@shn-engr.com

DAILY FI	ELD REPORT	1	JOB NO. 08909). 120
ATT IF I			Page / of /
Project Name PALCO (0 6ARAGO	Client/Owner		Daily Field Report Sequence No
General Location Of Work	Owner/Client Representative		Date 3-4-05 Day Of Week
General Contractor	Grading Contractor		Project Engineer
Type Of Work MW INSTALL	Grading Contractor, Superint	endent, Or Foreman	Supervisor RURSE
Source & Description Of Fill Material		Weather RAIN	Technician
			l Engr, Architect, Developer, Etc)
Describe Equipment Used For Having, Spreading, Watering	Conditioning & Compecting		
1 1 1130 START	-101 MM-121	topolables	SAMPLE D.5-8-1
112.50 BOCK	N OHOEDEN		
1 22/1	1 to 15	8 2511	AUGERS
. Set V	Jeur 1013	crew - FL	USH MOUNT
I DE,	m of so	14 700	4/ 5014
FROM	n mus		MILLA GATE
NeAl	2 mw-5		
14:30 OF	G-517e		

SALV

SAMPLER TYPE: Macro Core

77 Consulting Engineers & Geologists, Inc.

812 West Wabash, Eureka, CA ph. (707) 441-8855 fax. (707) 441-8877

PROJ. NAME: PALCO Company Garage LOCATION: Scotia, CA

PROJ. NUMBER: 089097.120 TOC ELEVATION: 140.89 Feet (NAVD88)

DRILLER: Fisch Environmental DEPTH OF BORING/WELL: 15.0 / 15.0 Feet BGS
DRILLING METHOD: GeoProbe / HSA
DEPTH TO FIRST WATER: ~8.0 Feet BGS

SCREEN INTERVAL: 5.0-15.0 Feet BGS

MONITORING WELL LOG MW-7

SHN# 00	Well Survey Report for: PALCO 089097.120 PM: Lay erences: FB E-02-2 pg. 33 & TDS	Survey By: JTG & EWW	Date: 5/11/05
	atum: NAVD 88 per tie to LV 039		
Elevation D	atuni. NAVD 66 per tie to LV 059	3 Designation 3-100	
Horizontal :	Datum: NAD 83 per GPS ties to C		.8L"
	Corpscon from NAD 22	7 Coords.	
Well Data:			
	T00 1 4144		
# MW-7	TOC el. 140.89	Rim el. 141.15	Grnd. el. 141.06
	Northing: 2066610.933670	Easting: 5976652.201707	Pt. # 2202
	Comment: No Notch		
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
#	TOC el.	D: al	C1 _1
#	Northing:	Rim el.	Grnd. el Pt. #
	Comment:	Easting:	
#	TOC el.	Rim el.	Grnd. el.
"	Northing:	Easting:	Pt. #
	Comment:		
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
	Comment:	-	
#	TOC el.	Rim el	Grnd. eI.
	Northing:	Easting:	Pt. #
	Comment:	_	
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
	Comment:		
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
0	Comment:	- 10-41400000000000000000000000000000000	
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
	Comment:		SS-26-SAC
#	TOC el.	Rim el.	Grnd. el.
	Northing:	Easting:	Pt. #
	Comment:		
TOC eleve	. are at notch or north side of casin	a Rim sleve are at north rim	Cround alove are average around
well, unles	ss noted.	g. Mili elevs, ale at north fill.	Stourid elevs, are average around
cm, united	110 10 10		

480 Hemsted Drive * Redding, CA 96002* Tel: 530.221.5424 * FAX: 530.221.0135 *E-mail: shrinfo@shn-redding.com 812 W. Wabash * Eureka, CA 95501 * Tel: 707.441.8855 * FAX: 707.441.8877 *E-mail: shrinfo@shn-engr.com

DAILY FI	ELD REPORT	10B NO 089097,120
		Page /of
PALCO Company Garage	CLIENT/OWNER PALCO	DAILY FIELD REPORT SEQUENCE NO
GENERAL LOCATION OF WORK Sculia CH	OWNER/CLIENT REPRESENTATIVE Bob Vogt	DATE DAY OF WEEK 3-23-05 Widnesday
Pugntialt Sampling	WEATHER OVERCAST	PROJECT ENGINEER/SUPERVISOR MORTIN E, La1
SOURCE & DESCRIPTION OF FILL MATERIAL	KEY PERSONS CONTACTED	David R. Pains
	EADING, WATERING, CONDITIONING, & COMPACTING	
0922 I started taking well by scrubbing 0948 I started taking 1043 I started taking 1043 I started purging caught in a gra 1120 I sampled mw-6 se 1211 I started funcing mw the old one that caught in a graduate 1245 I started funging mw in a graduated 5 1330 I started purging mw in a graduated 5 1400 I sampled mw-5 se 1410 I sampled mw-1 se	mw-6 with a disposable dualed 5 gal. bucket. suned well with cap and list got left in well last ye got left in well last ye and list suith cap and list suith a disposable bailer gal. bucket. I with a disposable bailer part bucket. I with a disposable bailer part bucket.	the sounder after each using it with DI water. bailer, punge water was after I fished out on, punge water was d. punge water was caught unge water was caught lid. lid.
1421 I started purging MW in a graduated 5 g 1454 I started purging MW graduated 5 gal be	al kicket.	, purge upter was cought in o
1516 I took Eh and coz	MCKel.	1 /
	en mw-7 with a dispunhla	is a black and 15° of
1538 I stanted punging mw cought in a gradual	- 2 with the periodalix pump	all punge water was
1600 + sampled MW-3 se	counted will with cap and lid	
1620 I sampled MW-4 se	could well with cop and li	d,
1744 OFF 5'176		
drain behind the Scuer treatment	punga water was caught old Bertains lounday buildi plant To GALLONS	thin dumped down the
COPY GIVEN TO:	nenonten m	() N P P -

CONSULTING ENGINEERS & GEOLOGISTS, INC.

480 Hemsted Drive * Redding, CA 96002* Tel: 530.221.5424 * FAX: 530.221.0135 *E-mail: shruinfo@shn-engr.com
812 W. Wabash * Eureka, CA 95501 * Tel: 707.441.8855 * FAX: 707.441.8877 *E-mail: shruinfo@shn-engr.com

DAILY F	FIELD REPORT	108 NO 089097,120
		Page 20f /2
PALCO Company Garage	CLIENT/OWNER PALCO	DAILY FIELD REPORT SEQUENCE NO
GENERAL LOCATION OF WORK Scotia CA	OWNER/CLIENT REPRESENTATIVE Bob Uogt	DATE DAY OF WEEK 2-24-05 Thunsday
Quantialy Sampling	WEATHER OVERCAS!	PROJECT ENGINEER/ SUPERVISOR MAINTIN E. La!
SOURCE & DESCRIPTION OF FILL MATERIAL	KEY PERSONS CONTACTED	David P. Pains
0820 I sampled MW-1, CE34 OFF SITE	2, secured will with	sap and lid.
-		
COPY CRIENTO		TEDRY () 18P.
COPY GIVEN TO:	REPOR	TEDRY () 1 P P -

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

Groundwater Elevations

Job No.:	089097.12	0.0	Name:	David R. Par	n-(
Client:	PALCO		Date:	3-23-05	
Location:	COMPAI	NY GARAGE SCOTIA,	CA Weath	er: Overcast	
Sample	Location	Time of Reading	Top of Casing Elevation (feet)	Depth To Water (feet)	Water Surface Elevation (feet)
MV	V-1	0933	142.64	2.97	139.67
MV	V-2	0928	137.66	4.96	132.70
MV	V-3	0936	138.29	4.63	133.66
MV	V-4	0938	139.74	4.37	/35.37
MV	V-5	0931	136.00	3.92	132.08
MV	N-6	0926	146.95	4.87	142.08
	ND ATION	0945	134.49	2.32	132.17
Mω	- 7	0922	140,89	6.23	134.66
				1	DA
		1			
				-	
0.5%					
			<u></u>		
2-					

EQUIPMENT CALIBRATION SHEET

Name:	David R. Pains
Project Name:	PALCO Company Garage
Reference No.:	089091,120
Date:	3/23/05
Equipment:	Turbidity Dissolved Oxygen Meter 4519
Description of	Calibration Procedure and Results:
pH &Ec	meter is calibrated using a 2 buffer
	with 7.01 and 4.01, the Ec (conductivity) is
set at	1413 145.
DO m	neter is self colibrating with the
A Himete	a set at 1.
()	
-	
il H r	

-	_	71	7
5	7	~	 /
C	1		

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project 1	Name: PAL	co Como	54 G	ofoot	Date/	Time	: 3	23-05	
Project 1	No.: 089	097,120	1	unuy			ame: Dav	A STATE OF THE PARTY OF THE PAR	Pains
Location	_	irotra (le Typ		and was	(3)
Well #:	MW		<i>n</i>		Weatl			reast	+n
	arbon Thickn		pet). A/A			Veede			1.1.
		coo, Depui (i	747		nej i	recue	d: YE	2 2	olphin
Total Wel (fee		Initial Depth t Water (feet)		leight of Wate Column (feet)	x		53 gal/ft (2-inc 53 gal/ft (4-in		1 Casing Volu
19.8		2.97	=	16.83	T x		.163	ch wen)	(gal) 2.74
. 110		200 1 7		10.07			1/03		2.77
Time	DO	CO ₂	ORP	EC	Te	mp	-77	Water Removed	
Time	(ppm)	(ppm)	(mV)	(uS/cm)	(°	F)	pH	(gal)	Comments
1022	0.68)						O col	
330		170	-83					0 gol.	
340				679	63	360	6.66	0.25 gal.	
1346	No Flow			671		10	6.64	2.75 gal.	
1352	then cell			629	64.	Section 2	6.56	5,50 gal	
								Jan.	
1410	Sample	Tima							
P	urge Method:	Haul R	/			Tota	al Volume R	emoved: 8, 2	5 (gal)
			41.1						7
	ory Informat	-							
Sai	nple ID	# & Ty Conta		Preservat	ive /	L	aboratory	A	Analyses
Mr.	- 1			Type	Ude	610	1	0010	1. 4 1
				YES	7.CL		1	The second secon	list 1
Mu	/- 1	2-60 ml	U011 5	Noni		MC	L	TPHD	
						-			
							180		
	Well Condit	ion: Good							
	Rema								

	_	75	
	7	4	1/,
C	il	ZA	_/

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project Name: PALCO Company Garage				arage				3-23-05		
Project No.: 089097, 120			Samp	ler N	ame: Dau	rid R.	Pamin			
Locatio		Sciotra, c	A		Samp	le Ty	pe: <u>Ge</u>	ound was	ten	
Well #:	Mu	1-2			Weat	her	Due	ecast.	and the second	
Hydrocarbon Thickness/Depth (feet): NA					Key N	Veede	d: YE	s D	olphin	
Total We		Initial Depth Water (feet)		Height of Wate Column (feet)			63 gal/ft (2-in 653 gal/ft (4-in		1 Casing Volum	
14.9	5 -	4.96	=	9.99	x	0	,163	=	1.63	
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)		mp 'F)	pН	Water Removed (gal)	Comments	
1000	0.70							0 001.		
1211	2	160	-48					0.25 gal.		
222	1			557	59.	40	6,54	1.75 001		
226	No Flow			528	60.	30	6,51	1.25 gal.		
231	three cell			499	60.	60	6.46			
235				498	60,		6.47	5 gal.		
								79.7	v .	
1245	Sampl-	· Time	-							
P	urge Method:	Hand B	a; 1	\		Tot	al Volume R	emoved: 6,5	60 (gal)	
	mple ID	# & T	ype of niners	Preservat Type		L	aboratory	Analyses		
Mu	1-2	3-40ml	UOH'S	YES	HCL	NO	L	8260	list 1	
mw-2		113942	UOH'S			MC		TPHO		
							_ W			
	Well Condi	tion: Gooc	1					10.5		

-	_	7/	V
2	7	- 4	1/
	1	LA	_/

812 W. Wabash * Eureka, CA 95501-2138 * 707/441-8855 * FAX: 707/441-8877 *shninfo@shn-engr.com

roject	Name: 001	40 0	100	Samplin	Date/			23-05	
		co Comp		-			7.20		0 .
Project	-	9097,120					me: Dav		Pains
Locatio		Sciotra, c	A		Sampl		- more and a second	und wo	ten
Well #:	1.700	1-3		0.00	Weath			ecast	1.1
Hydrod	carbon Thick	ness/Depth (f	eet)://	4	Key N	leede	d: YE	s i	Polphin
Total We (fee	Control of the Contro	Initial Depth Water (feet)		leight of Water Column (feet)	x		3 gal/ft (2-inc 53 gal/ft (4-inc		1 Casing Volume (gal)
14.9	5	4.63	=	10,32	×	0	.163	=	1.68
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ter	mp F)	рН	Water Removed (gal)	Comments
1029	0,91							0 001.	
1421	7	90	- 90					0 gol.	
1430				415	74	,40	6.50	1,73 001	
1434	No Flow			534		.80	6.52	1.75 gal. 350 gal. 5.25 gal. 7 gal.	
1439	them call			584	74	1.90	6.51	5,25 901.	
14 44	0.000.000.000.000.000			618	74	,30	6.51	7 991.	
1449				542	74.	5°	6.51	7 9 gal.	•
10.000									
1600	Sampl-	e Time					227.32		
	ourge Method:		ai l	-		Tota	al Volume Re	emoved: 8,	50 (gal)
Sa	mple ID	# & T	ype of iners	Preservati Type	STATE OF	Laboratory		Analyses	
Mu	1-3	3-40ml	UOH'S	YES ,	HCL	NC	L	8260	list 1
MA	U-3	2-60 ml	UOH'S	None		MC	L	TPHD	
							*		
	Well Cond	ition: Gao c	1					" EA."	
		Rechai	eged 1	Lo 4.85	at	S	ample	time	

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project N	lame: PAL	to Com	any G	arage 1	Date/	Time:	3 7	23-05	
Project N		097.120	1		Samp	ler Na	me: Dav		Pains
Location: & Sciotra CA						le Тур		and wa	
Well #:	MW				Weath	17.3		acost	7 176
	rbon Thickn		feet): //			leeded	1.5		Polphin
Total Well (feet)		Initial Depth Water (feet)		leight of Water Column (feet)	x		3 gal/ft (2-inc 3 gal/ft (4-inc		1 Casing Volum
15,0	5 -	4.37	=	10.68	×	0	163	=	1.74
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ter (°	mp F)	рН	Water Removed (gal)	Comments
1035	0,66)						0 oal.	
1454		350	-111					0.25 gal.	
1503				1179	62	20	6.63	1,0001	
1507	No Flow			1191		2,40	6.63	3,500001	
10.00	those cell			1202	62	.6°	6.65	3.50 gal.	
1620	Sample	Time							
	rge Method:_ ory Informat		ai!	-		Tota	l Volume Re	emoved: 5.	25 (gal)
	ple ID	# & T	ype of niners	Preservati Type	ve/	Laboratory			Analyses ·
MW	-4	3-40ml	UOH'S		HCL	NC	L	8260	list 1
MW-4		2-60 ml vost's 1				NC		TPHO	
							4.		
	Well Condit	ion: Gae	Į						

-		V
2	9 -1	1/
	ULA	_/

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project Name: PALCO Company Garage					Date/Time:		3	3-23-05			
Project No.: 089097, 120					Sampler Name: Da						
Location: & Sciolia (A											
Well #:			11						7.176		
Well #: MW-5 Hydrocarbon Thickness/Depth (feet): NA					Key Needed:			VES Dolphin			
Total Wel (fee		Initial Depth (Water (feet)	to = }	leight of Water Column (feet)	х		gal/ft (2-in 3 gal/ft (4-ir		1 Casing Volum		
13.91	-	3.92	=	9,99	x	0	163	-	1.63		
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	347.00	mp F)	рН	Water Removed (gal)	Comments		
1008	1.76)						0 ool.			
1251	1	50	/3					0.25 gal.			
1300	1			356	68	60	6,34	1,25 001			
1306	No Flow			447		20	6.39	1.25 gal.			
1312	them cell			620		60	720	5 gal.			
1319				627	71	10	6.39	6.001			
1324				644		20	6.41	5 gal. 6.5 gal. 8.5 gal.			
1400	Sample	Tim-									
	urge Method:_ ory Informat	Hand B	ai!	2		Tota	l Volume R	emoved: <u>8,</u>	25 (gal)		
Sample ID		# & Type of Containers		Preservative / Type		Laboratory		Analyses			
MW-5		3-40ml UDA'S		VES HEL		NCL		8260 list 1			
MW.5		2-60 ml UOH'S		None		NCL		TPID			
							V				
	Well Condit	7000									

STIN

7 CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project Name: PALCO Company Garage					Date/Time: 4			-23-05			
Project No.: 089097, 120					Sample	er Na	me: Dav	d R.	Pains		
Location: & Sciotra CA					Sample	Тур	e: Geo		nd water		
Well #: $MW-6$					Weather Overcast						
Hydrocarbon Thickness/Depth (feet): NA					Key Needed:			211			
Total Well (feet		Initial Depth Water (feet)		leight of Water Column (feet)	x		3 gal/ft (2-inc 3 gal/ft (4-inc		1 Casing Volum (gal)		
13.78	9 - [4.97	=	8.91	х	0	163	=	1.45		
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ten (°F		рН	Water Removed (gal)	Comments		
09531	0.72)						0 gol.			
1043		70	108					0.25 gal.			
1052				401	61.	20	6.27	1.50 gal.			
1038	No Flow			387	62.	Children were a	6.23	3 gal			
1103	thru cell			384	62		6.23	4.50 gal.			
									3 11		
1120	Sample										
	E 100 100 100 100 100 100 100 100 100 10	Hand B	ai'l			Tota	il Volume R	emoved: 4,	50 (gal)		
	ory Informat			Preservati	/ I		horstory	T	Analyses -		
Sample ID		# & Type of Containers		Type	ive /	Laboratory		Allalyses			
MW-6		mes military	UOH'S	VES HCL		NCL		6260 list 1			
mw-6		2-60 ml UOH'S		None		NCL		TPHD			
							I/EE				
	Well Condi	tion: Good	l						9		

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Project N	Jame: PAL	CO Comp	any 6a	rage	Date/	Γime:	_3	- 23-05	
Project N		92,120			Sample	er Na	me: Da	id R. Pa	ine
Location		otra ci	4		Sample	еТур	e: Geo	rind wat	la
Well #:		U-7'			Weath	er	Out	ecast	
Hydroca	rbon Thickne	ess/Depth (fe	eet)://	1	Key N	eede	d: YE	s Dolp	hin
otal Well (feet		Initial Depth t Water (feet)		Height of Water Column (feet)	x		3 gal/ft (2-in 53 gal/ft (4-ir		1 Casing Volume (gal)
14.05		6.23	=	7.82	×		163	=	1.27
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ten (°I		pН	Water Removed (gal)	Comments
015 (0.12						Y .	0 gal.	
516		50	-62					0,25 961.	
38	V			975	16.8	90	6.74	951	start
546	No Flow			983	66.0	80	6.91	2 941	
555	then cell			908	68,	50	6.35	4 991	
104				860	68,9		6,53	6 cal	
1641	-			839	20.4	70	4.48	10 kgh	-
718				835	691	10	6,52	18 991	+
1736 PI	ory Informat		pump	839	70.5	Tot	al Volume I	Removed: 17	.00 (gal)
	nple ID	# & Ty Conta		Preservat Type		L	aboratory		Analyses
mu	U-7	3 - 40ml	von's		ICL	No	.7	8260	list 7
100000	1-7	3 -40ml	UOH'S		ICL	NO	5534		ed Methone
	1-2	2-60 m		None		No		TPHD/	
Mu	1-7	500ml 1	Imbun	YES H	12504	MC	L	COD O	and Ammonia
	1-7	500ml	Amber	YES H	2504	NC	L	N:tnog+	n and TPO4
ma	,-7	500ml	plastic	None		NC	L	/	03, 504 AIK
ma	v - 7		plastic	Non-c		M			matals a mon & F.
	Well Condit	ion: Good							

March 21, 2005

Pacific Lumber-M P.O. Box 37 125 Main St Scotia, CA 95565-0037

Attn: Bob Vogt / Environmental Service

RE:

SAMPLE IDENTIFICATION

Fraction Client Sample Description

01A MW-7 @ 7.5'

Order No.: 0503177 Invoice No.: 48897 PO No.: M7007

ELAP No. 1247-Expires July 2006

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

North Coast Laboratories, Ltd.

Date: 21-Mar-05

CLIENT:

Pacific Lumber-M

Project:

Lab Order:

0503177

CASE NARRATIVE

BTEX:

Some reporting limits were raised for sample MW-7 @ 7.5' due to matrix interference.

21-Mar-05

WorkOrder: 0503177

ANALYTICAL REPORT

Client Sample ID: MW-7 @ 7.5'

Lab ID: 0503177-01A

Received: 3/7/05

Collected: 3/4/05 12:50

Test Name: BTEX	Reference:	EPA 5035/EPA 8021B
-----------------	------------	--------------------

<u>Parameter</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	µg/g	1.0	3/15/05	3/16/05
Benzene	ND	0.0050	μg/g	1.0	3/15/05	3/16/05
Toluene	ND	0.010	μg/g	1,0	3/15/05	3/16/05
Ethylbenzene	ND	0.0050	µg/g	1.0	3/15/05	3/16/05
m,p-Xylene	ND	0.0050	μg/g	1.0	3/15/05	3/16/05
o-Xylene	ND	0.0050	μg/g	1.0	3/15/05	3/16/05
Surrogate: Cis-1,2-Dichloroethylene	101	71.8-135	% Rec	1.0	3/15/05	3/16/05

Test Name: TPH as Diesel/Motor Oll Reference: EPA 3550/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	1.0	μg/g	1.0	3/10/05	3/15/05
TPHC Motor Oil	ND	10	∙ µg/g	1.0	3/10/05	3/15/05

Test Name: TPH as Gasoline Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	. <u>DF</u>	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	μg/g	1.0	3/15/05	3/16/05

North Coast Laboratories, Ltd.

Pacific Lumber-M 0503177 CLIENT:

Work Order: Project:

Method Blank

QC SUMMARY REPORT

									,		į
Sample ID: MB-13166	Batch ID: 13166	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Analysis Date: 3/16/05 10:23:52 AM	0:23:52 AM	Pren Date: 3/45/05	3/15/05	
Client ID:		Run ID:	ORGC8_050315A	115A	. •	SeqNo:	490344		•		
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val) Ref Val	%RPD RPDLimit	3PDLimit	Qual
MTBE	QN	0.050						-			
Benzene	QN	0.0050									
Toluene	QN	0.0050									
Ethylbenzene	QN	0.0050									
m,p-Xylene	QN	0.0050									
o-Xylene	QN	0.0050									
Cis-1,2-Dichloroethylene	0.791	0.10	1.00	. 0	79.1%	72	135	0			
Sample ID: MB-13166	Batch ID: 13166	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Analysis Date: 3/16/05 10:23:52 AM):23:52 AM	Pren Date: 2/45/05	. 3/45/05	
Client ID:		Run ID:	ORGC8_050315C	115C		SeqNo:	491195				
Analyfe	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val) Ref Val	%RPD RPDLimit	3PDLimit	Quai
MTBE	QN	0.050									
Benzene	Q.	0.0050									
Toluene	Q	0.0050									
Ethylbenzene	QN	0.0050									
m,p-Xylene	ON TO THE PROPERTY OF THE PROP	0.0050						٠			
o-Xylene	QN	0.0050									
Cis-1,2-Dichloroethylene	0.879	0.10	1.00	0	87.9%	72	135	c			
								o.			

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Pacific Lumber-M 0503177 CLIENT:

Work Order:

Project:

Method Blank

QC SUMMARY REPORT

Sample ID: MB-13166	Batch ID: 13166	Test Code	Test Code: BTXES	Units: µg/g		Analysis	Date: 3/16/0	Analysis Date: 3/16/05 10:39:01 PM	Prep Date: 3/15/05	
Client ID:		Run ID:	ORGC8_050315C	115C		SeqNo:	491204	-		,
Analyte	Result	Limit	*	SPK value SPK Ref Val	% Rec	% Rec LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
MTBE	QN	0.050								
Benzene	0.003632	0:0020								-
Toluene	0.004950	0.0050								- د
Efhylbenzene	0.003278	0.0050								- כ
m,p-Xylene	QN	0.0050								ה
o-Xylene	0.003963	0.0050								-
Cis-1,2-Dichloroethylene	0.920	0.10	1.00	0	91.9%	72	135	0		7
Sample ID: MB-13166	Batch ID: 13166	Test Code	Test Code: TPHCGS	Units: µg/g		Analysis	Date: 3/16/0	Analysis Date: 3/16/05 10:39:01 PM	Prep Date: 3/15/05	
Client ID:		Run ID:	ORGC8_050315B	И5В		SeqNo:	490871	_		,
Analyte	Result	Limit		SPK value SPK Ref Val	% Rec	LowLimit	HighLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Ousi
TPHC Gas (C6-C14)	0.3736	1.0		4-						
Sample ID: MB-13141	Batch ID: 13141	Test Code	Test Code: TPHDMS	Units: ua/a		Analysis	Date: 3/45/0	Analysis Date: 3/15/05 12:05:20 DM	December 2	
Client ID:		Run ID:	ORGC7_050315A	15A		SeqNo:	490155	W 1 77777 1 W	riep Date: 3/10/03	•
Analyte	Result	Limit		SPK value SPK Ref Val	% Rec	LowLimit	HighLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPHC Diesel (C12-C22) TPHC Motor Oil	ON ON	0; 6								i

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

North Coast Laboratories, Ltd.

CLIENT: Pacific Lumber-M
Work Order: 0503177

Project:

Laboratory Control Spike

QC SUMMARY REPORT

Client ID:			Carlonge DIVES	Units: µg/g		Analysis	Date: 3/15/	Analysis Date: 3/15/05 7-39-32 pm	Drop Date:	10,17	
		Run ID:	ORGC8 050315A	15A		SedNo:	ADDRAG	25.55.55 F M	гтер Date: 3/15/05	c0/c1	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	l owl imit	High imit	5 PPD Dof 1/2[9		
HOLIV			,				ı ıığı ı	וא כי ואפו עמו		KPDLIMIT (Qual
19 I W	0.3160	0.050	0.400	0	79.0%	75	124	0			
Benzene	0.04793	0.0050	0.0500	0	95.9%	8	128				
Toluene	0.05069	0.0050	0.0500	0	101%	82	126	· c			
Ethylbenzene	0.04603	0.0050	0.0500	0	92.1%	8	126	0 0			
m,p-Xylene	0.09010	0.0050	0.100	0	90.1%	84	130	o c			
o-Xylene	0.04490	0.0050	0.0500	0	89.8%	84	125	o c			
Cis-1,2-Dichloroethylene	0.908	0.10	1.00	0	90.8%	72	135	0			
Sample ID: LCS-13166	Batch ID: 13166	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Date: 3/15/	Analysis Date: 3/15/05 7:39:32 PM	Prep Date: 3/15/05	15/05	1
Client ID:		Run ID:	ORGC8_050315C	15C		SeqNo:	491193				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	High∐imit	RPD Ref Val	%RPD RPD	RPDLimit	Oual
MTBE	0.3737	0.050	0.400	0	93.4%	75	124	c		1	
Benzene	0.05367	0.0050	0.0500		107%	2 8	128				
Toluene	0.05588	0.0050	0.0500	0	112%	82	126	o c			
Ethylbenzene	0.05343	0.0050	0.0500	0	107%	. 8	126	o c			
m,p-Xylene	0.1049	0.0050	0.100	0	105%	84	130				
o-Xylene	0.05239	0.0050	0.0500	0	105%	8	125	· c			
Cis-1,2-Dichloroethylene	1.01	0.10	1.00	0	101%	72	135				

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CLIENT: Pacific Lumber-M

Work Order: 0503177

Project:

Laboratory Control Spike Duplicate

QC SUMMARY REPORT

	Batch ID: 13166	Test Code: BTXES	BTXES	Units: µg/g		Analysis	5 Date: 3/16/	Analysis Date: 3/16/05 8:21:01 PM	Preo D	Prep Date: 3/15/05	
Client ID:		Run ID:	ORGC8_050315C	1150		SeqNo:	491203	33			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	0.3503	0.050	0.400	0	87.6%	75	124	0.374	6.46%	ħ	
Benzene	0.05057	0.0050	0.0500	0	101%	80	128	0.0537	5.95%	5 Ř	
Toluene	0.05223	0.0050	0.0500	0	104%	85	126	0.0559	6.75%	Σħ	
Ethylberzene	0.05135	0.0050	0.0500	0	103%	80	126	0.0534	3 98%	3 #	
m,p-Xylene	0.09995	0.0050	0.100	0	100%	84	130	0.105	4 86%	5 ñ	
o-Xylene	0.04941	0.0050	0.0500	0	98.8%	84	125	0.0524	5 87%	5 π	
Cis-1,2-Dichloroethylene	0.984	0.10	1.00	0	98.4%	72	135	1.01	2.59%	र ध	
Sample ID: LCS-13166	Batch ID: 13166	Test Code:	Test Code: TPHCGS	Units: µg/g		Analysis	. Date: 3/16/	Analysis Date: 3/16/05 2:32:08 PM	Pren D	Prep Date: 3/15/05	
Client ID:		Run ID:	ORGC8_050315B	115B		SeqNo:	490862	· N	•		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Quai
TPHC Gas (C6-C14)	10.50	1.0	10.0	0	105%	94	140	0			
Sample ID: LCSD-13166-G	Batch ID: 13166	Test Code:	Test Code: TPHCGS	Units: nafa		Analycis	Doto: 2Men	Analysis Doto: 9460c 0.00.00			
Client ID:		Run ID:	ORGC8 050315B	158		Sealing Sealing	/ Calc. 3/ 10/0:	03 3:30:02 PM	Prep U	Prep Date: 3/15/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit		HighLimit RPD Ref Val	MRPD	RPDI imit	2
TPHC Gas (C6-C14)	10.66	1.0	10.0	0	107%	94	140	10.5	1.53%	15	erai.
Sample ID: LCS-13141	Batch ID: 13141	Test Code:	Test Code: TPHDMS	Units: µg/g		Analysis	Date: 3/15/	Analysis Date: 3/15/05 10:13:36 AM	Pren D	Pren Date: 3/10/05	
Client ID:		Run ID:	ORGC7_050315A	15A		SeqNo:	490152	2			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) TPHC Mater Oil	9.648	1.0	10.0	0	96.5%	82	153	0			
	61.13	OL.	20.0	0	109%	92	133	0.			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits B - An R - RPD outside accepted recovery limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

Pacific Lumber-M 0503177 CLIENT:

Work Order:

Project:

Laboratory Control Spike Duplicate QC SUMMARY REPORT

											1
Sample ID: LCSD-13141	Batch ID: 13141	Test Code:	est Code: TPHDMS	Units: µg/g		Analysis	Date: 3/15/0	Analysis Date: 3/15/05 10:32:09 AM	Prep Da	Prep Date: 3/10/05	
Client ID:		Run ID:	ORGC7_050315A	15A		SeqNo:	490153		<u>.</u>		
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	HighLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Oual
TOUC Disease (Codo popo)											İ
I LUC Diesei (CIZ-CZZ)	9.720	1.0	10.0	0	97.2%	82	153	9.65	0.749%	τ̈́	
TPHC Motor Oil	21 BO	40	ć		,000	•)	2	2	
	0.11	2	20.0	>	%60L	9/	133	21.7	0.326%	15	

J-Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Chain of Custody

t+18050	
	LABORATORY NUMBER:

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

ALL CONTAMINATED NON-AQUEOUS SAMPLES WILL BE RETURNED TO CLIENT

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- · Work order Summary;
- · Laboratory Narrative;
- · Results; and
- · Chain of Custody (copy).

WORK ORDER #: 0503563

Work Order Summary

CLIENT:

Ms. Loretta Tomlin

BILL TO: Ms. Loretta Tomlin

North Coast Laboratories 5680 West End Road

North Coast Laboratories 5680 West End Road

Arcata, CA 95521

PHONE:

707-822-4649 ext 101

Arcata, CA 95521

P.O. #

FAX:

707-822-6831

PROJECT#

DATE RECEIVED:

03/29/2005

DATE COMPLETED:

04/01/2005

CONTACT: Kelly Buettner

FRACTION#

NAME

0503582-1A

TEST

01A 02A

Lab Blank

Mod. RSK-175 Mod. RSK-175

03A

LCS

Mod. RSK-175

04/11/05

Laboratory Director

Certification numbers: AR DEQ - 03-084-0, CA NELAP - 02110CA, LA NELAP/LELAP- AJ 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/04, Expiration date: 06/30/05 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified RSK 175

North Coast Laboratories Workorder# 0503563

One VOA Vial-40 mL sample was received on March 29, 2005. The laboratory performed analysis via Modified RSK 175 for Methane using GC/FID. The method involves placing an aliquot of the sample in a headspace vial. The vial is then placed into HP7694 Headspace Autosampler equipped with oven, shaker and 1 mL sample loop. Sample is incubated and then equilibrated at 40°C for 15 minutes with high agitation. Finally, a direct injection of the headspace is performed. See the data sheets for the reporting limits for each compound.

Requirement	RSK 175	ATL Modifications
Sample Collection	Collect sample in 60 mL crimp-top vial.	Collect sample in 40 mL VOA vial.
Headspace Generation	Headspace is generated in 60 mL sample vial by displacing volume of liquid with Helium. The amount of liquid should be 10% of sample volume in bottle, up to 10 mL.	5.0 mL of sample is displaced with 5.0 mL Nitrogen and transferred to a Nitrogen purged and capped autosampler vial. Headspace is then generated in the autosampler vial
Sample Preparation	Sample is shaken 5 min. to equilibrate analyte between headspace and liquid phase.	Prior to injection, autosampler shakes sample for 15 min. while heating to 40°C.
Headspace Injection	Syringe injection of 300 - mL headspace into GC.	Autosampler pressurizes sample to fill 1.0 mL loop with headspace sample.
Calibration and Quantitation	Direct injections of gas phase standards are used to obtain a Calibration Curve. Henry's Law is used to calculate mg of gas per Liter of water. Calculation requires recording total volume of serum bottle and headspace, and sample temperature.	Calibration standards are prepared by addition of a gaseous spike solution to clean water. Response factors are calculated for each level of a multi point calibration, and the mean is used to calculate quantitation for each target analyte.
Initial Calibration Curve (ICAL)	Linear regression	% RSD = 30%, use average RF to quantify results</td
Lab Blanks	Blank subtraction is performed.	No blank subtraction; Lab Blank must be less than the Reporting Limit.
Specified Detectors	FID or ECD	FID or TCD

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

AIR TOXICS LTD.

SAMPLE NAME: 0503582-1A

ID#: 0503563-01A

MODIFIED METHOD RSK-175 GC/FID

File Name:	7033019	Date of Collection: 3/24/05
DIL Factor:	1.00	Date of Analysis: 3/30/05 10:18 PM

	Rpt. Limit	Amount
Compound	(ug/ml)	(ug/ml)
Methane	0.010	2.7

Container Type: VOA Vial-40 mL

AIR TOXICS LTD.

SAMPLE NAME: Lab Blank

ID#: 0503563-02A

MODIFIED METHOD RSK-175 GC/FID

File Name:	7033010	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/30/05 07:06 PM
	Rpt. Limit	Amount
Compound	(ug/ml)	(ug/ml)
Methane	0.010	Not Detected

Container Type: NA - Not Applicable

AIR TOXICS LTD.

SAMPLE NAME: LCS

ID#: 0503563-03A

MODIFIED METHOD RSK-175 GC/FID

File Name:	7033009	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/30/05 06:45 PM

Compound %Recovery
Methane 75

Container Type: NA - Not Applicable

Page 1 of 1

Sub-Contract

Date Due: 4/7/05

Chain of Custody Record Date Shipped: 3/28/05 Carrier: Airborne

	4190 2			2011			
	ubcontractor.	Air Toxics Lab 180 Slue Ravine Felson, CA 955	Rd., Ste. B	Send Results to:	North Coest Labe 5680 West End Road Arceta, CA 95521		
		9169851000 Sample Receiving			Attn: Loretta Tomlin (707) 822-4849		
	1/1		1900	Laura	Thomas AT	2 3/29/05	10
elinquished By	: (signature)		Data/Time	CReceived By: (signal	Line)	Date/Time	
elinguished By:	tsignature)		Dale/Time	Received By: (signet	ure)	Date/Time	
elinquished By	(signature)		Date/Time	Received Dy: (s.gnal)	ure) .	DateTime	
			Analys	is Request			
NCL Sample 0503582-14			Sampled: 05 6:20:00 AM	Analysis / Net			
				8	at 192		
					CUSTODY BEAL Y N KONE TEN	INTACT?	
			Sitt				

Return Chain of Custody to NCL

Rush Charges Authorized:

Chain of Custody

0503582

LABORATORY NUMBER:

Š

TAT: □ 24 Hr □ 48 Hr □ 5 Day □ 5–7 Day STD (2–3 Wk) □ Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By: /// Final Report: FAX ☐ Verbal ☐ By: ///	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—10 ml VOA;	PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₂ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—cither	SAMPLE CONDITION/SPECIAL INSTRUCTIONS	Global ID #	70602300204	505			COOLER +5MB/ 12:27	SAMPLE DISPOSAL	\Box	CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus CHand
		9.5									DATETIME	N	
P P C C C C C C C C C C C C C C C C C C	IN S S S S S S S S S S S S S S S S S S S		1 - 400 E	8 3 CO SET	× × ×	××	×××	XXXXXX			BECEIVED BY (Sign)	TOWN THE PACK	
	Lay	JR. buin	24	MATRIX*	99	-	-	-			6	1	
	in E. La	2	Gaugge +	TIME MAT	1120	lyou	1410	1630 Solude			NATIO NATION	1	
1097	8		1000	DATE	3/33/05			W abulos	1	6	0-	L' COINT	-
Attention: Buls Use Results & Invoice to: PALCO Address: P.O. Box 37	Phone: 164- 4268 Copies of Report to SHN	Sampler (Sign & Print): PROJECT INFORMATION	Project Number: OB 90 97, 120 Project Name: MLr O Comp. Purchase Order Number: M 575	ABID SAMPLEID	Mu-6	NW-5	MW-1	h.o.m 7- mm			D BY (Sign & P	וסחיו הסתוע	

ALL CONTAMINATED NON-AQUEQUS SAMPLES WILL BE RETURNED TO CLIENT MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

April 13, 2005

Pacific Lumber-M P.O. Box 37

125 Main St

Scotia, CA 95565-0037

Attn: Bob Vogt / Environmental Service

RE: 089097.120, PALCO Company Garage

Order No.: 0503534 Invoice No.: 49320 PO No.: M7007

ELAP No. 1247-Expires July 2006

SAMPLE IDENTIFICATION

Fraction	Client Sample Description	
01 A	MW-6	
01 D	MW-6	
02A	MW-2	
02D	MW-2	
03A	MW-5	
03D	MW-5	
04A	- MW-1	
04D	MW-1	
05A	MW-3	
05D	MW-3	
06A	MW-4	
06D	MW-4	
07A	MW-7	
07D	MW-7	
07E	MW-7	
07F	MW-7	
07G	MW-7 (Dissolved)	
07H	MW-7	

aboratory Supervisor(s)

ND = Not Detected at the Reporting Limit
Limit = Reporting Limit
All solid results are expressed on a weet.

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

North Coast Laboratories, Ltd.

CLIENT:

Pacific Lumber-M

Project:

089097.120, PALCO Company Garage

Lab Order:

0503534

CASE NARRATIVE

Date: 13-Apr-05

TPH as Diesel:

Samples MW-1, MW-3, MW-4 contain some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights. These samples also contain material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

TPH as Diesel/Motor Oil:

Sample MW-7 contains some material lighter than diesel. However, some of this material extends into the diesel range of molecular weights. This sample also contains material in the diesel range of molecular weights, but the material does not exhibit the peak pattern typical of diesel oil.

Gasoline Components/Additives:

Samples MW-1, MW-3 and MW-4 appear to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline range.

Some reporting limits were raised for sample MW-4 due to matrix interference.

Sample MW-3 was reported as ND with a dilution due to matrix interference.

The surrogate recovery for sample MW-4 was outside of the acceptance limits. The surrogate recoveries for the quality control samples were within the acceptance limits. This indicates that the low surrogate recovery may be due to matrix effects from the sample.

EPA 8260B:

Sample MW-7 appears to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported result represents the amount of material in the gasoline range.

Some reporting limits were raised for sample MW-7 due to matrix interference.

The dibromofluoromethane surrogate recovery for sample MW-7 was below the lower acceptance limit. The three other surrogate recoveries were within the acceptance limits; therefore, the data were accepted.

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries were above the upper acceptance limits for several analytes and the 1,4-dichlorobenzene surrogate. These recoveries indicate that the sample results may be erroneously high. There were no detectable levels of these analytes in the sample with the exception of m,p-xylene which was slightly above the upper acceptance limit in the LCSD. The LCS recovery for m,p-xylene was within the acceptance limits; therefore, the data were accepted.

CLIENT:

Pacific Lumber-M

Project:

089097.120, PALCO Company Garage

Lab Order:

0503534

CASE NARRATIVE

The LCS recovery was below the lower acceptance limit for bromomethane. The LCSD recovery was within the acceptance limits; therefore, the data were accepted.

The relative percent difference's (RPD's) for the laboratory control samples were above the upper acceptance limits for bromomethane and 2,2-dichloropropane. This indicates that the results could be variable. Since there were no detectable levels of the analytes in the sample, the data were accepted.

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Received: 3/24/05

Collected: 3/23/05 11:20

Lab ID: 0503534-01A

Client Sample ID: MW-6

Gasoline	Components/Additives
Gasoline	Components/A

Reference:	LUFT/EPA	8260B Modified
------------	----------	----------------

Device of the	Result	Limit	Units	$\mathbf{\underline{DF}}$	Extracted	Analyzed
<u>Parameter</u>	Result	Tilliff	Omis	<u>101.</u>	Extracteu	Allaryzeu
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/∟	1.0		4/1/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		4/1/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		4/1/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0	•	4/1/05
Benzene	ИD	- 0.50	μg/L	1.0	•	4/1/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		4/1/05
Toluene	ND	0.50	μg/L	1.0		4/1/05
Ethylbenzene	ND	0.50	μg/L	1.0		4/1/05
m,p-Xylene	ND	0.50	μg/L	1.0		4/1/05
o-Xylene	ND	0.50	µg/L	1.0		4/1/05
Surrogate: 1,4-Dichlorobenzene-d4	84.2	80.8-139	% Rec	1.0		4/1/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	50	μg/L	1.0		4/1/05

Client Sample ID: MW-6

Received: 3/24/05

Collected: 3/23/05 11:20

Lab ID: 0503534-01D

Test Name: TPH as Diesel

<u>Parameter</u>	Result	<u>Limit</u>	$\underline{\mathbf{Units}}$	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	50	µg/L	1.0	4/4/05	4/5/05
Surrogate: N-Tricosane	120	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Client Sample ID: MW-2

Received: 3/24/05

Collected: 3/23/05 12:45

Lab ID: 0503534-02A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference:	LUFT/EPA	8260B Modified
------------	----------	----------------

I ODD I (IIIII)						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1.0		4/1/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		4/1/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0	100	4/1/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		4/1/05
Benzene	ND	0.50	μg/L	1.0		4/1/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0	,	4/1/05
Toluene	ND	0.50	μg/L	1.0		4/1/05
Ethylbenzene	ND	0.50	. µg/∟	1.0		4/1/05
m,p-Xylene	ND	0.50	μg/L	1.0		4/1/05
o-Xylene	ND	0.50	μg/L	1.0		4/1/05
Surrogate: 1,4-Dichlorobenzene-d4	86.1	80.8-139	% Rec	1.0		4/1/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	Limit	Units	$\mathbf{\underline{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	50	μg/L	1.0		4/1/05

Client Sample ID: MW-2

Received: 3/24/05

Collected: 3/23/05 12:45

Lab ID: 0503534-02D

Test Name: TPH as Diesel

<u>Parameter</u>	Result	<u>Limit</u>	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	ND	50	μg/L	1.0	4/4/05	4/5/05
Surrogate: N-Tricosane	99.2	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Client Sample ID: MW-5

Received: 3/24/05

Collected: 3/23/05 14:00

Lab ID: 0503534-03A

Test Name: Gasoline Components/Addit	ents/Additives Reference: LUFT/EPA 8260B Modified					
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		4/1/05
Tert-butyl alcohol (TBA)	ND	10	µg/∟	1.0		4/1/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		4/1/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μ g/L	1.0		4/1/05
Benzene	. ND	0.50	µg/L	1.0		4/1/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		4/1/05
Toluene	ND	0.50	µg/L	1.0		4/1/05
Ethylbenzene	ND	0.50	μg/L	1.0		4/1/05
m,p-Xylene	ND	0.50	µg/L	1.0		4/1/05
o-Xylene	ND	0.50	µg/L	1.0		4/1/05

Test Name: TPH as Gasoline

Surrogate: 1,4-Dichlorobenzene-d4

Reference: LUFT/EPA 8260B Modified

1.0

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	ND	50	μg/L	1.0		4/1/05

80.8-139

81.8

Client Sample ID: MW-5

Received: 3/24/05

% Rec

Collected: 3/23/05 14:00

4/1/05

Lab ID: 0503534-03D

Test Name: TPH as Diesel

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	ND	50	µg/L	1.0	4/4/05	4/5/05
Surrogate: N-Tricosane	101	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

r-05 ANALYTICAL REPORT

Received: 3/24/05

Collected: 3/23/05 14:10

Client Sample ID: MW-1 Lab ID: 0503534-04A

Test Name:	Gasoline	Components/Additives
------------	----------	----------------------

Reference	LUET/EDA	9260B	Madified .
Reference	LUP I/EPA	മ്മധമ	woaniea -

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		4/1/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		4/1/05
Di-isopropyl ether (DIPE)	ND	1.0	μġ/L	1.0	•	4/1/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		4/1/05
Benzene	13	0.50	μg/L	1.0		4/1/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		4/1/05
Toluene	4.8	0.50	μg/L	1.0		4/1/05
Ethylbenzene	13	0.50	μg/L	1.0		4/1/05
m,p-Xylene	5.5	0.50	μg/L	1.0		4/1/05
o-Xylene	1.1	0.50	μg/L	1.0		4/1/05
Surrogate: 1,4-Dichlorobenzene-d4	85.6	80.8-139	% Rec	1.0		4/1/05

Test Name: TPH as Gasoline

Reference	.UFT/EPA 8260B	Modified
-----------	----------------	----------

<u>Parameter</u>	Result	<u>Limit</u>	Units	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	3,700	50	µg/L	1.0	•	4/1/05

Client Sample ID: MW-1

Received: 3/24/05

Collected: 3/23/05 14:10

Lab ID: 0503534-04D

Test Name: TPH as Diesel

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Diesel (C12-C22)	540	50	μg/L	1.0	4/4/05	4/5/05
Surrogate: N-Tricosane	108	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Client Sample ID: MW-3

Received: 3/24/05

Collected: 3/23/05 16:00

Lab ID: 0503534-05A

Test Name:	Gasoline Components/Additive
Test Name:	Gasoline Components/Additive

Reference	LUET/EDA	SORAR	Modified
Deference	LUE DEPA	020UD	Moaniea

Parameter	Result	Limit	Units	$\underline{\mathbf{DF}}$	Extracted	Analyzed
	ND	10	µg/L	10		4/4/05
Methyl tert-butyl ether (MTBE)	ND	100	μg/L	10		4/4/05
Tert-butyl alcohol (TBA)				10		4/4/05
Di-isopropyl ether (DIPE)	ND	10	μg/L			4/4/05
Ethyl tert-butyl ether (ETBE)	ND	10	μg/L	10		4/4/05
Benzene	78	5.0	µg/∟	10		
Tert-amyl methyl ether (TAME)	ND	10	μg/L	10		4/4/05
Toluene	15	5.0	μg/L	10		4/4/05
Ethylbenzene	31	5.0	μg/L	10		4/4/05
m,p-Xylene	14	5.0	μg/L	10		4/4/05
" '-	5.6	5.0	μg/L	10		4/4/05
o-Xylene Surrogate: 1,4-Dichlorobenzene-d4	95.6	80.8-139	% Rec	10		4/4/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
r al allietti	 -			40		4/4/05
TPHC Gasoline	4,600	500	µg/∟	10		-17-17-00

Client Sample ID: MW-3

Received: 3/24/05

Collected: 3/23/05 16:00

Lab ID: 0503534-05D

TPH as Diesel

Test Name: IFIT do Dicooi						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
	550	50	μg/L	1.0	4/4/05	4/5/05
TPHC Diesel (C12-C22)	105	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Received: 3/24/05

Collected: 3/23/05 16:20

Lab ID: 0503534-06A

Client Sample ID: MW-4

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	Limit	Units	$\underline{\mathbf{DF}}$	Extracted	Analyzed
		. ——				AIDIDE
Methyl tert-butyl ether (MTBE)	ND	8.0	µg/L	1.0		4/2/05
Tert-butyl alcohol (TBA)	- ND	32	μg/L	1.0		4/2/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		4/2/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		4/2/05
Benzene	1,100	25	µg/L	50		4/1/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		4/2/05
Toluene	73	0.50	μg/L	1.0		4/2/05
Ethylbenzene	150	25	μg/L	50		4/1/05
m,p-Xylene	59	0.50	μg/L	1.0		4/2/05
o-Xylene	14	0.50	µg/L	1.0		4/2/05
Surrogate: 1,4-Dichlorobenzene-d4	79.9	80.8-139	% Rec	1.0		4/2/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	13,000	2,500	μg/L	50		4/1/05

Client Sample ID: MW-4

Received: 3/24/05

Collected: 3/23/05 16:20

Lab ID: 0503534-06D

Test Name: TPH as Diesel

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Diesel (C12-C22)	900	50	μg/L	1.0	4/4/05	4/5/05
Surrogate: N-Tricosane	104	70-130	% Rec	1.0	4/4/05	4/5/05

13-Apr-05

WorkOrder: 0503534

ANALYTICAL REPORT

Client Sample ID: MW-7

Received: 3/24/05

Collected: 3/24/05 8:20

Lab ID: 0503534-07A

Test Name:	EPA 8260B	

Test Name: EPA 8260B		Refer	ence: EPA 5	030B/8260	В	
Parameter	Result	<u>Limit</u>	Units	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Dichlorodifluoromethane	ND	1.0	μ g/L	1.0		3/26/05
Chloromethane	ND	2.0	µg/L	1.0		3/26/05
Vinyl chloride	ND	1.0	µg/L	1.0		3/26/05
Bromomethane	ND	1.0	μg/L	1.0		3/26/05
Chloroethane	ND	1.0	μg/L	1.0		3/26/05
Trichlorofluoromethane	ND	1.0	μg/L	1.0		3/26/05
1,1-Dichloroethene	ND	1.0	µg/L	1.0		3/26/05
Methylene chloride	ND	2.0	μg/L	1.0		3/26/05
trans-1,2-Dichloroethene	ND	1.0	μg/L	1.0		3/26/05
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		3/26/05
Terf-butyl alcohol (TBA)	ND	10	μg/L	1.0		3/26/05
Di-isopropyl ether (DIPE)	ND	1.0	µg/L	1.0		3/26/05
1,1-Dichloroethane	ND	1.0	µg/L	1.0	;	3/26/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		3/26/05
cis-1.2-Dichloroethene	ND ·	1.0	µg/L	1.0		3/26/05
2,2-Dichloropropane	ND	5.0	μg/L	1.0		3/26/05
Bromochloromethane	ND	1.0	µg/L	1.0		3/26/05
Chloroform	ND	1.0	μg/L	1.0		3/26/05
Carbon Tetrachloride	ND	1.0	μg/L	1.0		3/26/05
1,1,1-Trichloroethane	ND	1.0	μg/L	1.0		3/26/05
1,1-Dichloropropene	ND	1.0	μg/L	1.0		3/26/05
Benzene	3.5	0.50	μg/L	1.0	• .	3/26/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		3/26/05
1.2-Dichloroethane	ND	1.0	µg/L	1.0		3/26/05
Trichloroethene	ND	1.0	μg/L	1.0		3/26/05
Dibromomethane	ND	1.0	μg/L	1.0		3/26/05
1,2-Dichloropropane	ND	1.0	μg/L	1.0		3/26/05
Bromodichloromethane	ND	1.0	μg/L	1.0		3/26/05
cis-1,3-Dichloropropene	ND	1.0	μg/L	1.0	4	3/26/05
Toluene	2.6	0.50	μg/L	1.0		3/26/05
Tetrachloroethene	ND	1.0	μg/L	1.0		3/26/05
trans-1,3-Dichloropropene	ND	1.0	μg/L	1.0		3/26/05
1,1,2-Trichloroethane	ND	11	μg/L	1.0		3/26/05
Dibromochloromethane	ND	1.0	μg/L	1.0		3/26/05
1,3-Dichloropropane	ND	1.0	μg/L	1.0	•	3/26/05
1,2-Dibromoethane (EDB)	ND	2.0	μg/Ľ	1.0		3/26/05
Chlorobenzene	ND	1.0	μg/L	1.0		3/26/05
Ethylbenzene	2.0	0.50	μg/L	1.0		3/26/05
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1.0		3/26/05
m,p-Xylene	2.6	0.50	μg/L	1.0		3/26/05
o-Xylene	0.63	0.50	μg/L	1.0		3/26/05
Bromoform	. ND	1.0	μg/L	1.0		3/26/05
Styrene	ND	1.0	μg/L	1.0		3/26/05

Page 7 of 10

Date:	13-Apr-05		•	A.	NALY'	TICAL R	EPORT
WorkOrder	: 0503534			7,4.	_ (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Isopropylber	nzene	7.9	1.0	μg/L	1.0	*	3/26/05
Bromobenze		ND	1.0	μg/L	1.0		3/26/05
n-Propylben		16	1.0	μg/L	1.0		3/26/05
	achloroethane	ND	1.0	μg/L	1.0		3/26/05
2-Chlorotolu		ND	1.0	μg/L	1.0		3/26/05
4-Chlorotolu		ND	1.0	μg/L	1.0		3/26/05
1,2,3-Trichlo		ND	2.0	μg/L	1.0		3/26/05
1,3,5-Trimet		ND	1.0	μg/L	1.0		3/26/05
tert-Butylber	•	7.9	1.0	μg/L	1.0		3/26/05
1,2,4-Trimet		ND	1.0	μg/L	1.0		3/26/05
sec-Butylber	•	ND	4.0	μg/L	1.0		3/26/05
4-Isopropylto		ND	1.0	μg/L	1.0		3/26/05
1,3-Dichloro		ND	1.0	µg/L	1.0		3/26/05
1.4-Dichloro		ND	1.0	μg/L	1.0		3/26/05
n-Butylbenze		2.9	1.0	μg/L	1.0		3/26/05
1,2-Dichloro		ND	1.0	μg/L	1.0		3/26/05
	-3-chloropropane (DBCP)	ND	28	μg/L	1.0		3/26/05
1,2,4-Trichio		ND	2.0	μg/L	1.0		3/26/05
Hexachlorob		ND	2.0	μg/L	1.0		3/26/05
Naphthalene	}	ND	2.0	μg/L	1.0		3/26/05
1,2,3-Trichlo		ND	2.0	μg/L	1.0		3/26/05
• •	: 1,2-Dichloroethane-d4	104	80-120	% Rec	1.0		3/26/05
Surrogate	: 1,4-Dichlorobenzene-d4	81.2	80-120	% Rec	1.0		3/26/05
_	: Dibromofluoromethane	76.3	80-120	% Rec	1.0		3/26/05
Surrogate	: Toluene-d8	98.7	80-120	% Rec	1.0		3/26/05
Test Name:	TPH as Gasoline		Refer	ence: LUFT/	EPA 8260E	3 Modified	
Parameter		Result	Li <u>mit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed
TPHC Gaso	line	1,500	50	μg/L	1.0		3/26/05
11110 Gaso				, ,			
Client Com	ole ID: MW-7	·····	Rec	eived: 3/24/0	15	Collected: 3/24	1/05 8:20
Lab ID: 05	•			52 , 52 , 52, 5, 5, 5			
				EDA 2)E0 2		
Test Name:	Ammonia Nitrogen withou			ence: EPA 3			
<u>Parameter</u>		Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
Ammonia Ni	trogen	1.5	0.20	mg/L	1.0		3/30/05
Test Name:	Chemical Oxygen Deman	d	Refer	ence: EPA 4	10.4		
Parameter		<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
	kygen Demand	140	10	mg/L	2.0	3/30/05	3/30/05

Date:	13 - A	pr-05
WorkOrder:	0503	534
Client Sample	ID:	MW-7

ANALYTICAL REPORT

Received: 3/24/05	

Collected: 3/24/05 8:20

~ .	-	0500504 055
Lab	ш:	0503534-07E

Test Name:	Nitrogen -	Total	Kjeldahl
Test Name:	Nitrogen -	lotai	Kjeldani

Reference: EPA 351.4

Extracted Analyzed

Parameter Nitrogen-Total Kjeldahl

Parameter

Parameter

Total Nitrogen

Result Limit 3.6 1.0 Units \mathbf{DF} mg/L 1.0

4/7/05

4/12/05

Test Name: Total Nitrogen

Result 3.6

Reference: Std. Meth. 19th Ed. 4500-N Limit Units mg/L 1.0

0.20

 \mathbf{DF} 1.0

 \mathbf{DF}

10

Extracted Analyzed 4/13/05

Test Name: Total Phosphate Phosphorus

Limit Result

2.4

Reference: EPA 365.2 Units mg/L

Extracted 4/5/05

Analyzed 4/5/05

Client Sample ID: MW-7

Total Phosphate Phosphorus

Received: 3/24/05

Collected: 3/24/05 8:20

Lab ID: 0503534-07F

Test Name: Alkalinity

Limit

Reference: Std. Meth. 19th Ed. 2320 B DF

Extracted Analyzed

Parameter Alkalinity

<u>Parameter</u>

Sulfate

Result 400

Result

Units mg/L CaCO3 1.0

4/5/05

Test Name: Chloride, sulfate, fluoride, bromide

Reference: EPA 300.0 Limit Units

1.0

0.50

 \mathbf{DF}

1.0

 $\overline{\mathbf{DF}}$

1.0

Extracted Analyzed 3/25/05

Test Name: Nitrate/Nitrite

mg/L Reference: EPA 300.0

Units \mathbf{DF}

Parameter | Nitrate (as Nitrogen) Nitrite (as Nitrogen)

Result ND ND

2.1

Limit mg/L 0.10 0.10 mg/L

1.0 1.0

Extracted Analyzed 3/25/05 3/25/05

Test Name: Total Dissolved Solids

Parameter Total Dissolved Solids Result 510

Reference: EPA 160.1 Limit 10

Units mg/L

Extracted

Analyzed 3/29/05

Client Sample ID: MW-7 (Dissolved)

Received: 3/24/05

Collected: 3/24/05 8:20

Lab ID: 0503534-07G

Test Name: Arsenic

Reference: EPA 200.9

Result **Parameter** Arsenic

Limit 40

Units μg/L

 $\underline{\mathbf{DF}}$ 3.0

Extracted 3/24/05

Analyzed 4/6/05

Page 9 of 10

Date: 13-	Apr-05			A]	NALY	TICAL R	EPORT
WorkOrder: 050	3534				. ,		
Test Name: ICAP	Metals with Acid Diges	tion	Refer	ence: EPA 2	00.7		
Parameter		Result	Limit	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Antimony		ND	. 50	μg/L	1.0	3/24/05	4/5/05
Barium		14	5.0	μg/L	1.0	3/24/05	4/5/05
Beryllium		. ND	1.0	μg/L	1.0	3/24/05	4/5/05
Cadmium	•	ND	10	μg/L	1.0	3/24/05	4/5/05
Chromium		ND	10	μg/L	1.0	3/24/05	4/5/05
Cobalt		ND	10	μg/L	1.0	3/24/05	4/5/05
Copper		ND	10	μg/L	1.0	3/24/05	4/5/05
Iron		7,600	100	μg/L	1.0	3/24/05	4/5/05
Manganese		3,500	2.0	μg/L	1.0	3/24/.05	4/5/05
Molybdenum		30	20	µg/∟	1.0	3/24/05	4/5/05
Nickel		ND	20	μg/L	1.0	3/24/05	4/5/05
Silver		ND	10	μg/L	1.0	3/24/05	4/5/05
Vanadium		ND	10	µg/L	1.0	3/24/05	4/5/05
Zinc		ND	20	μg/L	1.0	3/24/05	4/5/05
2.00			•				
Test Name: Lead			Refer	ence: EPA 2	.00.9		
Parameter		Result	Limit	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Lead		ND	10	μg/L	1.0	3/24/05	3/25/05
2422				ED 4 0	45.4		
Test Name: Merci	ury		Refer	ence: EPA 2			
Parameter		Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
Mercury	•	ND	1.0	µg/∟	1.0	3/25/05	3/30/05
Test Name: Selen	nium		Refer	ence: EPA 2	9.00		
1 CSt I vicino.		Result	Limit	Units	DF	Extracted	Analyzed
<u>Parameter</u>		ND	10	<u>umres</u> µg/L	1.0	3/24/05	3/28/05
Selenium		ND	10	P9/⊏		0.2	
Test Name: Thalli	um		Refer	ence: EPA 2	200.9		
Parameter		Result	Limit	$\underline{\mathbf{Units}}$	\mathbf{DF}	Extracted	<u>Analyzed</u>
Thallium		ND	10	μg/L	1.0	3/24/05	4/4/05
1 Hambir							
Client Sample ID:	MW-7		Rec	eived: 3/24/0)5	Collected: 3/2	4/05 8:20
-				-			
Lab ID: 0503534-	0.117		-				
m / NT. TENII.	as Diesel/Motor Oil		Dafor	ence FPA 3	3510/GCFII	D(LUFT)/EPA 80	15B
Test Name: 1PH	as Dieselimoroi Oil	75. 1 7.	·				Analyzed
<u>Parameter</u>		Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	
TPHC Diesel (C12-C	022)	200	. 50	μg/L	1.0	3/28/05 3/28/05	3/29/05 3/29/05

TPHC Motor Oil

3/29/05

3/28/05

1.0

μg/L

ND

Date: 13-Apr-05

Method Blank QC SUMMARY REPORT 089097.120, PALCO Company Garage Pacific Lumber-M 0503534 Work Order: CLIENT: Project:

Sample ID: MB 040105	Batch ID: R34187	Test Code:	Fest Code: 8260ΟΧΥW Units: μg/l	Units: µg/L		Analysis	Analysis Date: 4/1/05 6:50:00 AM	Prep Date:	
Client ID:		Run ID:	ORGCMS2_050401A	50401A		SeqNo:	494553		
Analyfe	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec		LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	Qual
Methyl tert-butyl ether (MTBE)	ON .	1.0							
Tert-butyl alcohol (TBA)	Q.	10							
Di-isopropyl ether (DIPE)	Q	1.0				,	-		
Ethyl tert-butyl ether (ETBE)	QN	1.0							
Benzene	0.1229	0.50							-
Tert-amyl methyl ether (TAME)	QN	1.0					٠		
· Toluene	N	0.50	•						
Ethylbenzene	0.08233	0.50							7
m,p-Xylene	QN	0.50							
o-Xylene	ON	0.50							
1,4-Dichlorobenzene-d4	0.827	0.10	1.00		82.7%	84	139 0		

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

Pacific Lumber-M 0503534 089097.120, PALCO Company Garage Work Order: CLUENT:

Project:

Method Blank

Clichet ID: Result Linit SPK value SPK Ref Val % Rec Loulinit Hightlinit RPD Raf Val SR RPD Result Linit SPK value SPK Ref Val % Rec Loulinit Hightlinit RPD Raf Val SR RPD Result Linit SPK value SPK Ref Val % Rec Loulinit Hightlinit RPD Raf Val SR RPD Result RPD Raf Val SR RPD Ref Val SR RPD	Sample ID: MB 032505	Batch ID: R34064	Test Code: 8260W	8260W	Units: µg/L		Analysis	Date: 3/25/	Analysis Date: 3/25/05 7:59:00 AM	Prep Date:	ite:
Passuff Linit SPK value SPK Ref Ref Value SPK Ref Va	Client ID:		Run ID:	ORGCMS2_08	50325A		SeqNo:	4929	41		
ND	Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit		%RPD	
D.09178 2.0 ND 1.0 ND ND ND ND ND ND ND N	Dichlorodifluoromethane	QN	1.0								
ND 10 10 ND 10	Chloromethane	0.09179	2.0								ſ
ND 1.0	Vinyl chloride	QN	1.0								
ND 1.0	Bromomethane	QN	1.0								
ND 1.0	Chloroethane	QN .	1.0	•							
ND 1.0	Trichlorofluoromethane	QN	1.0								
ND 2.0	1,1-Dichloroethene	N	1.0								
ene ND 1.0 r (MTBE) ND 1.0 PA) ND 1.0 PE) 0.2414 1.0 PE) ND 1.0 PE ND ND ND PE ND ND ND	Methylene chloride	N	2.0								
ND 1.0	trans-1,2-Dichloroethene	QN	1.0								
Phe December of the Reporting Limits 10 10 10 10 10 10 10 1	Methyl tert-butyl ether (MTBE)	QN	1.0	٠							
PE 0.2414	Tert-butyl alcohol (TBA)	QN	10								
ND 1.0	Di-isopropyl ether (DIPE)	0.2414	1.0								7
CETRE 0.2158 1.0	1,1-Dichloroethane	QN	1.0								
ND 1.0	Ethyl tert-butyl ether (ETBE)		1.0								7
ND 1.0 ND 1.0 ND 1.0 ND 1.0 O.1713 1.0 O.1735 0.50 er (TAME) 0.3484 1.0 ND 1.0	cis-1,2-Dichloroethene	QN	1.0								
ND 1.0	2,2-Dichloropropane	QN	1.0		•				٠		
ND 1.0 ND 1.0 ND 1.0 O.1713 1.0 O.1435 0.50 TAME O.3484 1.0 ND 1.0	Bromochloromethane	ON	1.0								
ND 1.0 ND 1.0 O.1713 1.0 O.1735 0.50 TAME O.3484 1.0 ND 1.0	Chloroform	QN	1.0								
ND 1.0	Carbon Tetrachloride	QN	1.0								
0.1713 1.0 0.1135 0.50 TAME) 0.3484 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 O.1792 1.0 ND 1.0 O.1792 1.0 ND 1.0 R - RPD outside accepted recovery limits R - RPD outside accepted recovery limits	1,1,1-Trichloroethane	QN	1.0		ŕ	•					
0.1135 0.50	1,1-Dichloropropene	0.1713	1.0								J
TAME) 0.3484 1.0 ND 1.0 1.0 ND 1.0 1.0 ND 1.0 1.0 ND 1.0 0.1792 ND 1.0 1.0 Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits - Not Detected helow quantitation limits R - RPD outside accepted recovery limits	Benzene	0.1135	0.50								ſ
ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 O.1792 1.0 ND 1.0 O.1792 1.0 ND 5. Spike Recovery outside accepted recovery limits Tably the defected helow quantitation limits R - RPD outside accepted recovery limits	Tert-amyl methyl ether (TAME)	0.3484	1.0								ŗ
ND 1.0 ND 1.0 ND 1.0 ND 1.0 0.1792 1.0 ND 1.0 S - Spike Recovery outside accepted recovery limits analyze defected helow amontitation limits R - RPD outside accepted recovery limits	1,2-Dichloroethane	ON.	1.0								
ND 1.0 ND 1.0 0.1792 1.0 ND 1.0 S - Spike Recovery outside accepted recovery limits native detected below anantitation limits R - RPD outside accepted recovery limits	Trichloroethene	ON.	1.0								
ND 1.0 0.1792 1.0 ND 1.0 S - Spike Recovery outside accepted recovery limits native defected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	Dibromomethane	Q	1.0					-			
ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 NOt Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits analyze defected below quantitation limits R - RPD outside accepted recovery limits	1,2-Dichloropropane	QN	1.0								
ND 1.0 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	Bromodichloromethane	0.1792	1.0								J
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyze detected helow anantitation limits R - RPD outside accepted recovery limits	cis-1,3-Dichloropropene	ON	1.0								
		tected at the Reporting Limit		S - Spi	ike Recovery outside	accepted reco	wery limits	[[]	3 - Analyte detected in	the associat	ed Method Blank
	I ~ Analyte de	etected helow anantitation limi	¥	R - RP	'D anteide accented re	arovery Timits					

Work Order: 02 Project: 08 Toluene	0503534)
	-		-	
nene	089097.120, PALCO Company C	Garage		Method Blank
	0.1699	0.50		<u>L</u>
Tetrachloroethene	QN	1.0		
trans-1,3-Dichloropropene	ane . ND	1.0		
1,1,2-Trichloroethane	QN	1.0		
Dibromochloromethane	ON .	1.0		
1,3-Dichloropropane	QN	1.0		
1,2-Dibromoethane (EDB)	ON (ac	2.0		
Chlorobenzene	0.1231	1.0		,
Ethylbenzene	0.1560	0.50		j
1,1,1,2-Tetrachloroethane	ND ND	1.0		
m,p-Xylene	ND	0.50		
o-Xylene	QN	0.50		
Bromoform	0.4317	1.0		ר
Styrene	CN	1.0		
Isopropylbenzene	ON	1.0		
Bromobenzene	ON	1.0		
n-Propylbenzene	0.2016	1.0		7
1,1,2,2-Tetrachloroethane		1.0		
2-Chlorotoluene	0.2013	1.0		,
4-Chlorotoluene	0.1729	1.0		.
1,2,3-Trichloropropane		2.0		
1,3,5-Trimethylbenzene		1.0		7
tert-Butylbenzene	0.2601	1.0		7
1,2,4-Trimethylbenzene	e 0.2622 ·	1.0		7
sec-Butylbenzene	0.2511	1.0		7
4-Isopropyltoluene	QN	1.0		
1,3-Dichlorobenzene	ON .	1.0		
1,4-Dichlorobenzene	QN .	1.0		
n-Butylbenzane	0.3521	1.0		
,2-Dichlorobenzene		1.0		
1,2-Dibromo-3-chloropropane (DBCP)	ropane (DBCP) ND	2,0		
1,2,4-Trichlorobenzene	QN	2.0		
Hexachlorobutadiene	QN	2.0		•
Naphthalene	0.5840	2.0		7
Qualifiers: NI	ND - Not Detected at the Reporting Limit		S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank
- I ·	J - Analyte detected below quantitation limits	nits	R - RPD outside accepted recovery limits	

.

CLIENT:	Pacific Lumber-M				•			QC SUMMARY REPORT	IMAR	Y REPC	RT
	120, PALCO Company	Garage			·			r		Method Blank	1ank
1,2,3-Trichlorobenzene 1,2-Dichloroethane-d4 1,4-Dichlorobenzene-d4 Dibromofluoromethane Toluene-d8	1e ND 4 0.981 d4 0.894 1e 1.03	2.0 0.10 0.10 0.10 0.10	1.00 1.00 1.00 1.00	0000	98.1% 89.4% 103% 97.6%	08 08 08 08	120 120 120 120	0 0 0			
Sample ID: MBLK Client ID: Analyte	Batch ID: R34132 Result	Test Code: AMMW Run ID: WC_05 Limit SPK	AMMW WC_050330H SPK value	Units: mg/L SPK Ref Val	% Rec	Analysis SeqNo: LowLimit	Analysis Date: 3/30/05 SeqNo: 493932 WLimit HighLimit RPD Ref Val	ים Ref Val	Prep Date:	ate: RPDLimit	Qual
Ammonia Nitrogen	QN	0.20									
Sample ID: MB-13219A Client ID: Analyte	Batch ID: 13219	Test Code: Run ID: Limit	Test Code: AS200.9X U Run ID: INAA2_050407A Limit SPK value SF	Units: µg/L 7A SPK Ref Val	% Rec	Analysis SeqNo: LowLimit	Analysis Date: 4/6/05 3:55:00 PM SeqNo: 496545 LowLimit HighLimit RPD Ref Val	55:00 PM	Prep Da	Prep Date: 3/24/05 %RPD RPDLimit	Qual
Arsenic	ND Bodde ID: Boddo	Toot Codo.	and Co	l Infer mal		nimiran	adiocie -chaft		200	and order	
Sample ID: MBLK Client ID: Analyte	Batch ID: K34124 Result	Run ID: WC_05	CODW WC_050330E SPK value	Units: mg/L SPK Ref Val	% Rec	Analysis SeqNo: LowLimit	Analysis Date: 3/30/05 SeqNo: 493802 wLimit HighLimit RF	2 2 RPD Ref Val	Prep Us	Prep Date: 3/30/05 %RPD RPDLimit	Qual
Chemical Oxygen Demand	MD	5.0							:		
Sample ID: MB 032505 Client ID:	05 Batch ID: R34070	Test Code: Run ID:	Test Code: GASW-MS Units: Run ID: ORGCMS2_050325B	Units: µg/L 50325B		Analysis SeqNo:	Analysis Date: 3/25/05 7:59:00 AM SeqNo: 493015	7:59:00 AM	Prep Date:	ate:	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	²D Ref Val	%RPD	RPDLimit	Qual
TPHC Gasoline	23.99	50								:	ſ

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits R - RPD outside accept

QC SUMMARY REPORT 089097.120, PALCO Company Garage Pacific Lumber-M 0503534 Work Order: CLIENT: Project:

Method Blank

Sample ID: MB 040105	Batch ID: R34188	Test Code: GASW-MS	GASW-MS	Units: µg/L		Analysis I	Analysis Date: 4/1/05 6:50:00 AM	Prep Date:	
Client ID:		Run ID:	ORGCMS2_050401B	50401B		SeqNo:	494580		
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	Qual
TPHC Gasoline	24.80	50			And a second of the second of				7
Sample ID: MBLK 032505	Batch ID: R34069	Test Code: ICIONW	ICIONW	Units: mg/L		Analysis	Analysis Date: 3/25/05 2:59:09 PM	Prep Date:	
Client ID:		Run ID:	Run ID: INIC2_050325B	3B		SeqNo:	493002		
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Sulfate	QN	0.50							٠,
Sample ID: MBLK 032505	Batch ID: R34067	Test Code: ICNOW	ICNOW	Units: mg/L		Analysis	Analysis Date: 3/25/05 2:59:09 PM	Prep Date:	
Client ID:		Run ID:	Run ID: INIC2_050325A	5 A		SeqNo:	492984		
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrate (as Nitrogen)	QN	0.10						7,000.00	
Nitrite (as Nitrogen)	QN	0.10							

S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

Qual Method Blank QC SUMMARY REPORT Prep Date: 3/24/05 %RPD RPDLimit LowLimit HighLimit RPD Ref Val Analysis Date: 4/5/05 3:38:00 PM 496109 SeqNo: % Rec Units: µg/L SPK value SPK Ref Val Run ID: INICP1_050405B Test Code: ICPX Limit 50 5.0 11.0 10 10 10 20 20 20 20 10 10 20 20 089097.120, PALCO Company Garage Result O.4600 2.240 2.290 2.030 2.450 Batch ID: 13219 Pacific Lumber-M 0503534 Sample ID: MB-13219P Work Order: Molybdenum CLIENT: Manganese Beryllium Cadmium Vanadium Project: Chromium Client ID: Antimony Analyte Barium Cobalt Copper Nickel Silver Zinc Iron

S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

QC SUMMARY REPORT 089097.120, PALCO Company Garage Pacific Lumber-M 0503534 Work Order: CLIENT: Project:

Method Blank

Sample ID: MB-13219P	Batch ID: 13219	Test Code: ICPX	ICPX	Units: µg/L		Analysis	Analysis Date: 4/8/05 3:05:00 PM	5:00 PM	Prep Da	Prep Date: 3/24/05	
Client ID:		Run ID:	INICP1_050408A	8 A		SeqNo:	497258				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPC	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	QN	50									
Barium	QN	5.0		-							
Beryllium	QN	1.0									
Cadmium	QN	10									
Chromium	QN .	10								-	
Cobalt	1.560	10									ר
Copper	ON .	10									
Iron	Q.	100									
Manganese	QN	2.0									
Molybdenum	QN	20									
Nickel	Q.	20									
Silver	. QN	10						•			
Vanadium	 QN	10									
Zinc	5.870	20									7
Sample ID: MB-13223	Batch ID: 13223	Test Code: MERCW	MERCW	Units: µg/L		Analysi	Analysis Date: 3/30/05		Prep Da	Prep Date: 3/25/05	
Client ID:		Run ID:	CVAA1_050330A	30A		SeqNo:	493829				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPI	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	N	1.0									
Sample ID: MBLK 4-7-05	Batch ID: R34338	Test Code: NKJEW	NKJEW	Units: mg/L		Analysi	Analysis Date: 4/12/05		Prep Da	Prep Date: 4/7/05	
Client ID:	•	Run ID:	WC_050412D	. 1		SedNo:	497769				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LcwLimit HighLimit RPD Ref Val	D Ref Vai	%RPD	RPDLimit	Qual
Nitrogen- Total Kjeldahl	0.2300	1.0									٦

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Pacific Lumber-M 0503534 Work Order: CLIENT:

Project:

089097.120, PALCO Company Garage

Method Blank

QC SUMMARY REPORT

Sample ID: MBLK 4-11-05 Client ID:	Batch ID: R34338	Test Code: NKJEW Run ID: WC_050	NKJEW WC_050412D	Units: mg/L		Analysis I SeqNo:	Analysis Date: 4/12/05 SeqNo: 497773	Prep Date: 4/11/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Nitrogen- Total Kjeldahl	0.3200	1.0	·	:				**	7
Sample ID: MB-13219A Client ID;	Batch ID: 13219	Test Code: Run ID:	Test Code: PB200.9X	Units: µg/L 5A		Analysis SeqNo:	Analysis Date: 3/25/05 5:43:00 PM SeqNo: 492794	Prep Date: 3/24/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Lead	QN	10	-						
Sample ID: MBLK Client ID:	Batch ID: R34207	Test Code: PO4TOW Run ID: WC_0504	PO4TOW WC_050405C	Units: mg/L		Analysis SeqNo:	Analysis Date: 4/5/05 SeqNo: 494812	Prep Date: 4/5/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Phosphate Phosphorus	QN	0.020							
Sample ID: MB-13219A Client ID:	Batch ID: 13219	Test Code: SE200.9X Run ID: INAA2_05	SE200.9X UNAA2_050328A	Units: µg/L 8A		Analysis SeqNo:	Analysis Date: 3/28/05 6:38:00 PM SeqNo: 493198	Prep Date: 3/24/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Selenium	QN	10	a de la companya de l						
Sample ID: MBLK	Batch ID: R34144	Test Code: TDS	TDS	Units: mg/L		Analysis	Analysis Date: 3/29/05	Prep Date:	
Client ID:		Run 1D:	WC_050331D		÷	SedNo:	494084		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LcwLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Dissolved Solids	QN	10							

S - Spike Recovery outside accepted recovery limits ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

Qualifiers:

B - Analyte detected in the associated Method Blank

	Pacific Lumber-M					÷.,	QC SUI	QC SUMMARY REPORT)RT
Work Order: 0505554 Project: 089097.1	089097.120, PALCO Company Garage	Jarage						Method Blank	31ank
Octob distribution	Datch ID: 40040	Toot Code: 11 200 0X	TI 200 0X	I Inite: 110/I		Analyeie	Analysis Data: 4/4/05 2:53:00 PM	Pran Date: 3/24/05	
Client ID:		Run ID:	INAA2_050404B	4B		SeqNo:	494704		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Thallium	QN	10				<u>.</u>			
Sample ID: MB-13268 Client ID:	Batch ID: 13268	Test Code: TPHDIW Run ID: ORGC7_	TPHDIW Un	Units: µg/L 05A		Analysis SeqNo:	Analysis Date: 4/5/05 1:56:12 PM SeqNo: 496433	Prep Date: 4/4/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPHC Diesel (C12-C22) N-Tricosane	ND 54.5	50.	50.0	0	109%	70	130 0		
Sample ID: MB-13230 Client ID:	Batch ID: 13230	Test Code: Run ID:	Test Code: TPHDMW Ur Run ID: ORGC7_050329A	Units: µg/L 129A		Analysis SeqNo:	Analysis Date: 3/29/05 12:01:16 PM SeqNo: 494635	Prep Date: 3/28/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
TPHC Diesel (C12-C22)	18.94 ND	50							ŗ
	v				•				
			·						
									٠
Qualifiers: ND - Not J - Analyl	ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits	mits	S-SF R-R	S - Spike Recovery outside accepted recovery limits R - RPD outside acceptec recovery limits	e accepted rec recovery limit	overy limits	B - Analyte detected	B - Analyte detected in the associated Methoc Blank	lank

North Coast Laboratories, Ltd.

Pacific Lumber-M CLIENT:

	mber-M							QC SUI	QC SUMMARY REPORT	Y REPO	RT
Work Order: 0503534								-	thorntown.	Contract C	17.5
Project: 089097.12	089097.120, PALCO Company (Garage						7	Laboratory Control Spike	Control	pike
Sample ID: LCS-05220	Batch ID: R34187	Test Code:	Test Code: 8260OXYW	Units: µg/L		Analysis	Analysis Date: 4/1/05 2:49:00 AM	:49:00 AM	Prep Date:	je:	I
Client ID:		Run ID:	ORGCMS2_050401A	50401A		SeqNo:	494550		-		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	21.38	1.0	20.0	0	107%	80	120	0			
Tert-butyl alcohol (TBA)	625.7	10	400	0	156%	25	162	0			
Di-isopropyl ether (DIPE)	21.08	1.0	20.0	0	105%	80	120	0			
Ethyl tert-butyl ether (ETBE)	19.92	1.0	20.0	0	89.66	77	120	0			
Benzene	22.79	0.50	20.0	0	114%	78	117	0			
Tert-amyl methyl ether (TAME)	20.37	1.0	20.0	0	102%	64	136	0			-
Toluene	20.56	0.50	20.0	0	103%	80	120	0			
Ethylbenzene	21.56	0.50	20.0	0	108%	- 80	120	0			
m,p-Xylene	43.57	0.50	40.0	0	109%	80	120	0			
o-Xylene	19.62	0.50	20.0	0	98.1%	80	120	0			
1,4-Dichlorobenzene-d4	1.25	0.10	1.00	0	125%	. 81	139	o .			
Sample ID: LCSD-05220	Batch ID: R34187	Test Code:	Test Code: 82600XYW	Units: µg/L		Analysi	Analysis Date: 4/1/05 3:20:00 AM	3:20:00 AM	Prep Date:	te:	
Client ID:		Run ID:	ORGCMS2_050401A	50401A		SeqNo:	494551			1	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	20.49	1.0	20.0	0	102%	80	120	21.4	4.28%	20	
Tert-butyl alcohol (TBA)	547.4	10	400	0	137%	25	162	626	13.4%	20	
Di-isopropyl ether (DIPE)	20.45	1.0	20.0	0	102%	80	120	21.1	3.04%	20	
Ethyl tert-butyl ether (ETBE)	19.30	1.0	20.0	. 0	96.5%	11	120	19.9	3.16%	20	
Benzene	21.66	0.50	20.0	0	108%	78	117	22.8	5.07%	20	
Tert-amyl methyl ether (TAME)	19.93	1.0	20.0	0	%2.66	64	136	20.4	2.14%	20	
Toluene	19.90	0.50	20.0	0	89.5%	80	120	20.6	3.23%	20	
Ethylbenzene	20.31	0.50	20.0	0	102%	80	120	21.6	5.95%	50	
m,p-Xylene	41.66	0.50	40.0	0	104%	80	120	43.6	4.43%	20	
o-Xylene	19.16	0.50	20.0	0	95.8%	89	120	19.6	2.36%	20	
1,4-Dichlorobenzene-d4	1.25	0.10	1.00	0	125%	81	139	1.25	0.0841%	20	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Pacific Lumber-M 0503534 089097.120, PALCO Company Garage CLIENT:

Work Order: Project:

Laboratory Control Spike QC SUMMARY REPORT

Sample ID: LCS-05200	00 Batch ID: R34064	Test Code: 8260W	8260W	Units: µg/L		Analysis	Date: 3/25/	Analysis Date: 3/25/05 3:59:00 AM	Prep Date:	ate:	
Client ID:		Run ID:	ORGCMS2_050325A	50325A		SeqNo:	492938	88			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	ne 18.88	1.0	20.0	0	94.4%	80	120	0			
Chloromethane	21.06	2.0	20.0	0	105%	. 80	120	0			
Vinyl chloride	24.02	1.0	20.0		120%	80	120	0			S
Bromomethane	14.44	1.0	20.0	0	72.2%	80	120	0			S
Chloroethane	23.55	1.0	20.0	0	118%	80	120	0			
Trichlorofluoromethane	le 19.91	1.0	20.0	0	%9.66	80	120	0			
1,1-Dichloroethene	27.06	1.0	20.0	0	135%	80	120	0			S
Methylene chloride	24.89	. 2.0	20.0	0	124%	80	120	0			S
trans-1,2-Dichloroethene	ane 23.41	1.0	20.0	0	117%	80	120	0			
Methyl tert-butyl ether (MTBE)	(MTBE) 21.09	1.0	20.0	0	105%	80	120	0			
Tert-butyl alcohol (TBA)	A) 569.3	10	400	0	142%	80	120	0			S
Di-isopropyl ether (DIPE)	PE) · 20.77	1.0	20.0	0	104%	80	120	0			
1,1-Dichloroethane	24.03	1.0	20.0	0	120%	80	120	0			S
Ethyl tert-butyl ether (ETBE)	ETBE) 20.56	1.0	20.0	0	103%	80	120	0			
cis-1,2-Dichloroethene	e 21.52	1.0	20.0	0	108%	80	120	0			
2,2-Dichloropropane	25.52	1.0	20.0	0	128%	80	. 120	0			S
Bromochloromethane	22.42	1.0	20.0	0	112%	80	120	0			
Chloroform	23.02	1.0	20.0	0	115%	80	120	0			
Carbon Tetrachloride	22.46	1.0	20.0	0	112%	8	120	0			
1,1,1-Trichloroethane	23.02	1.0	20.0	0	115%	80	120	0			
1,1-Dichloropropene	20.66	1.0	20.0	0	103%	80	120	0			
Benzene	21.79	0.50	20.0	0,	109%	. 80	120	0			
Tert-amyl methyl ether (TAME)	er (TAME) 18.35	1.0	20.0	0	91.8%	80	120	. 0			
1,2-Dichloroethane	21.92	1.0	20.0	0	110%	80	120	0			
Trichloroethene	21.27	1.0	20.0	0	106%	80	120	0			
Dibromomethane	21.22	1.0	20.0	0	106%	80	120	0			
1,2-Dichloropropane	22.19	1.0	20.0	0	111%	80	120	0			
Bromodichloromethane	20.19	1.0	20.0	0	101%	8	120	0			
cis-1,3-Dichloropropene	пе 20.12	1.0	20.0	0	101%	80	120	0			
Qualifiers: N	ND - Not Detected at the Reporting Limit		S-S	S - Spike Recovery outside accepted recovery limits	ide accepted rec	sovery limits	m	B - Analyte detected in the associated Method Blank	in the associa	ted Method Bla	봄
•	A	4	£	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4					
P	J - Analyte detected below quantitation littles	ITHIES	K - K	K - KPD outside accepted recovery timits	а гесоуету ши	SI					

19097.120, PALCO Co	pany Garage							Labor	Laboratory Control Spike	
oethene Dichloropro nloroethane	pany Garage							TOTOTO		٥
									- In the second from	
		0.50	20.0	0	102%	80	120	0		
	21.09	1.0	20.0	0	105%	80	120	0		
	19.43	1.0	20.0	0	97.2%	80	120	0		
	20.56	1.0	20.0	0	103%	80	120	0		
Dibromochloromethane 19.	19.98	1.0	20.0	0	%6.66	80	120	0		
	20.77	1.0	20.0	0	104%	80	120			
EDB)	19.23	2.0	20.0	0	96.1%	80	120	0		•
Chlorobenzene 20.	20.10	1.0	20.0	0	101%	.80	120	0		
	19.60	0.50	20.0	0	98.0%	80	120	0		
1,1,1,2-Tetrachloroethane	19.09	1.0	20.0	0	95.4%	80	120	0		
	43.57	0.50	40.0	0	109%	80	120	0		
	20.80	0.50	20.0	0	104%	80	120	0		
Bromoform 22.	22.73	1.0	20.0	0	114%	80	120	0		
Styrene 20.	20.55	1.0	20.0	0	103%	80	120	0		
Isopropylbenzene 21.	21.00	1.0	20.0	0	105%	8	120	0		
Bromobenzene 20	20.33	1.0	20.0	0	102%	80	120	0		
n-Propylbenzene 22.	22.93	1.0	. 50.0	0	115%	80	120	0		
roethane	22.45	1.0	20.0	0	112%	80	120	0		
	22.18	1.0	20.0	0	111%	80	120	0		
4-Chlorotoluene	22.94	1.0	20.0	0	115%	80	120	0		
1,2,3-Trichloropropane	23.55	2.0	20.0	0	118%	80	120	0		
·	22.84	1.0	20.0	0	114%	80	120	0		
	22.76	1.0	20.0	0	114%	80	120	0		
1,2,4-Trimethylbenzene	23.53	1.0	20.0	0	118%	. 08	120	0		
sec-Butylberzene 24	24.85	1.0	20.0	0	124%	80	120	0	S	
4-Isopropyltcluene 23	23.42	1.0	20.0	0	117%	80	120	0		
1,3-Dichlorobenzene	24.00	1.0	20.0	O.	120%	80	120	0	S	"
1,4-Dichlorobenzene	24.56	1.0	20.0	0	123%	80	120	0	ω,	۲۵.
n-Butylbenzene 24	24.00	1.0	20.0	0	120%	80	120	0		
1,2-Dichlorobenzene 23	23.57	1.0	20.0	0	118%	80	120	0		
1,2-Dibromo-3-chloropropane (DBCP)	22.24	2.0	20.0	0	111%	80	120	0		
1,2,4-Trichlorobenzene	21.95	2.0	20.0		110%	80	120	0		
Hexachlorobutadiene 24	24.59	2.0	20.0	0	123%	80	120	0		S
Naphthalene 22	22.40	2.0	20.0	0	112%	80	120	0		
			La Calling Control						A THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON	1
Qualifiers: ND - Not Detected at the Reporting Limit	ng Limit		S - Spike Recov	ery outside	S - Spike Recovery outside accepted recovery limits	y limits	B-A	nalyte detected in the	B - Analyte detected in the associated Method Blank	
J - Analyte detected below quantitation	tation limits		R - RPD outside accepted recovery limits	accepted n	scovery limits					

CLIENT:	Pacific Lumber-M				,				QC SUMMARY REPORT	X REPORT
Work Order: Project:	089097.120, PALCO Company Garage	Company Gara	ıge				à		Laborator	Laboratory Control Spike
1,2,3-Trichlorobenzene	izene 9-d4	23.29	2.0	20.0	0 0	116% 103%	80	120	. 0	
1,4-Dichlorobenzene-d4	ine-d4 hane	1.22	0.10	1.00	0 0	122% 106%	80 80	120 120		တ
Toluene-d8		0.939	0.10	1.00	0	93.9%	80	120	0	
			,							
								•		
										·
Qualifiers:	ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits	teporting Limit quantitation limits		S - Spike Recovery outside accepted recor R - RPD outside accepted recovery limits	overy outside de accepted n	S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	ry limits	B - An	B - Analyte detected in the associated Method Blank	iated Method Blank
-										

	Pacific Lumber-M							QC SUMMARY REPORT	AMARY	REP)RT
Work Order: 0503534 Project: 089097.1	0503534 089097.120, PALCO Company 0	Garage					[Laboratory Control Spike Duplicate	Control Sp	ike Dup	licate
Sample ID: LCSD-05200	Batch ID: R34064	Test Code: 8260W	8260W	Units: µg/L		Analysis	Analysis Date: 3/26/05 3:27:00 AM	3:27:00 AM	Prep Date:		
Client ID:		Run ID:	ORGCMS2_050325A	150325A		SeqNo:	492955				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	19.54	1.0	20.0	0	97.7%	80	120	18.9	3.44%	20	
Chloromethane	23.95	2.0	20.0	0 .	120%	80	120	21.1	12.8%	20	
Vinyl chloride	26,56	1.0	20.0	0	133%	80	120	24.0	10.0%	20	တ
Bromomethane	18.27	1.0	20.0	0	91.4%	80	120	14.4	23.4%	20	ĸ
Chloroethane	27.86	1.0	20.0	0	139%	80	120	23.6	16.8%	20	S
Trichlorofluoromethane	24.14	1.0	20.0	0	121%	. 80	120	19.9	19.2%	20	S
1,1-Dichloroethene	26.45	1.0	20.0	0	132%	80	120	27.1	2.31%	50	S
Methylene chloride	27.61	2.0	20.0	0	138%	80	120	24.9	10.4%	20	S
trans-1,2-Dichloroethene	23.82	1.0	20.0	0	119%	80	120	23.4	1.71%	20	
Methyl tert-butyl ether (MTBE)	19.62	1.0	20.0	0	98.1%	80	120	21.1	7.25%	20	
Tert-butyl alcohol (TBA)	. 502.5	10	400	0	126%	80	120	569	12.5%	20	S
Di-isopropyl ether (DIPE)	19.89	1.0	20.0	0	99.4%	80	120	20.8	4.31%	20	
1,1-Dichloroethane	26.00	1.0	20.0	0	130%	80	120	24.0	7.87%	20	S
Ethyl tert-butyl ether (ETBE)	19.07	1.0	20.0	0	95.4%	80	120	20.6	7.48%	20	
cis-1,2-Dichloroethene	22.20	1.0	20.0	0	111%	80	120	21.5	3.12%	20	
2,2-Dichloropropane	20.01	1.0	20.0	O	100%	80	120	25.5	24.2%	20	ď
Bromochloromethane	24.27	1.0	20.0	0	121%	80	120	22.4	7.92%	20	S
Chloroform	25.56	1.0	20.0	0	128%	.80	120	23.0	10.5%	20	S
Carbon Tetrachloride	23.11	1.0	20.0	0	116%	80	120	22.5	2.84%	20	
1,1,1-Trichloroethane	23.55	1.0	20.0	0	118%	80	120	23.0	2.25%	20	
1,1-Dichlorapropene	20.72	1.0	20.0	0	104%	80	120	20.7	0.301%	20	
Benzene	23.41	0.50	20.0	0	117%	80	120	21.8	7.14%	20	
Tert-amyl methyl ether (TAME)	16.96	1.0	20.0	0	84.8%	80	120	18.4	7.90%	20	
1,2-Dichlorcethane		1.0	20.0	0	122%	80	120	21.9	10.3%	20	S
Trichloroethene	22.13	1.0	20.0	0	111%	80	120	21.3	3.98%	. 20	
Dibromomethane	22.17	1.0	20.0	0	. 111%	80	120	21.2	4.37%	. 20	
1,2-Dichloropropane	23.45	1.0	20.0	0	117%	80	120	22.2	5.53%	20	
Bromodichloromethane	21.92	1.0	20.0	0	110%	80	120	20.2	8.21%	20	
cis-1,3-Dichloropropene	17.66	1.0	20.0	0 . (88.3%	80	120	20.1	13.0%	20	
	*				,						

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Laboratory Control Spike Duplicate **QC SUMMARY REPORT** S B - Analyte detected in the associated Method Blank 23 6.00% 0.958% 0.716% 0.770% 1.70% 0.468% 1.08% 0.375% 2.66% 4.91% 2.79% 6.94% 6.08% 12.3% 9.55% 0.149% 2.13% 0.106% 1.42% 7.51% 3.14% 2.49% 0.279% 15.5% 3.93% 22.2 23.5 20.3 22.9 23.6 22.8 20.6 22.4 120 120 120 120 120 20 120 120 120 120 120 120 20 20 S - Spike Recovery outside accepted recovery limits 80 R - RPD outside accepted recovery limits 123% 103% 114% 117% 114% 113% 119% 128% 120% 102% 108% 101% 103% 105% 101% 102% 103% 103% 102% 116% 121% 118% 117% 125% 114% 117% 118% 106% 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 1.0 0.50 389097.120, PALCO Company Garage J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit 23.49 23.83 25.69 23.39 20.58 20.56 24.20 22.88 23.52 22.73 22.52 23,44 24.96 23.61 20.45 20.65 20.35 23.26 22.81 24.01 20.38 21.60 20.20 20.67 21.01 20.28 49.29 Pacific Lumber-M 1,2-Dibromo-3-chloropropane (DBCP) 0503534 1,1,2,2-Tetrachloroethane trans-1,3-Dichloropropene i,2-Dibromoethane (EDB) 1,1,1,2-Tetrachloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene I,2,4-Trichlorobenzene Dibromochloromethane I,2,3-Trichloropropane Hexachlorobutadiene 1,2-Dichlorobenzene 1,1,2-Trichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichloropropane 4-Isopropyltoluene **Tetrachloroethene** sec-Butylbenzene ert-Butylbenzene sopropylbenzene n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene n-Butylbenzene Work Order: Chlorobenzene Bromobenzene Ethylbenzene Naphthalene Qualifiers: CLIENT: n,p-Xylene **3romoform** Project: o-Xylene Styrene Foluene

145 145	CLIENT: Pacific I	Pacific Lumber-M						-	QC SU	MIMAR	QC SUMMARY REPORT	RT
1.15		4 .120, PALCO Company (Jarage		•				Laboratory	Control S	pike Dup	licate
1.15 0.10 1.00 0 115% 80 120 120 227% 20 1.10% 1.00 0 115% 80 120 1.00 227% 20 1.10% 20 2.61% 2.61% 20 2.61%	1,2,3-Trichlorcbenzene	23.01	2.0	20.0	0	115%	80	120	23.3	1.22%	20	
1.15 0.10 1.00 0 124% 80 120 1.05 2.77% 2.0 1.05 0.593 2.61% 2.0 2	1,2-Dichloroethane-d4	1.15	0.10	1.00	0	115%	80	120	1.03	11.0%	20	
1,15 0,10 1,00 0 1,15% 80 120 1,06% 20 20 20 20 20 20 20 2	1,4-Dichlorobenzene-d4	1.24	0.10	1.00	0	124%	80	120	1.22	2.27%	20	S
Batch ID: R34132 Test Code: AMMW Linit: mg/L Analysis Date: 3130/05 Prop Date: Round State Linit SpK value SPK Ref Val SeqNo: 493833 SeqNo: 493834 SeqNo: 493836 SeqNo:	Dibromofluoromethane	1.15	0.10	1.00	0	115%	80	120	1.06	7.46%	20	
Batch ID: R34132 Run ID: WC_050330H Result Limit SPK value SPK Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec Red No. 493933 % RPD RPDLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % RPD RPDLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % RPD RPDLimit RPD Ref Val % RPD Ref Va	Toluene-d8	0.963	0.10	1.00	0	96.3%	80	120	0.939	2.61%	20	
Result Limit SPK value SPK Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec RPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec RPD Ref Val % RPD Ref Val	Sample ID: LCS	Batch ID: R34132	Test Code:	AMMW	Units: mg/L		Analysis	Date: 3/30/0	5	. Prep Da	ate:	
Result Limit SPK value SPK Ref Val % Rec LowLinit HighLinit RPD Ref Val % Rec Client ID:		Run ID:	WC_050330H			SeqNo:	493933					
Batch ID: R34132 Test Code: AMMW Units: mg/L Analysis Date: 3/30/05 Prop Date: Sogno Low Limit High Limit RPD Ref Val SPK	Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
D: LGSD Batch D: R34132 Test Code: AMMV Units: mg/L Analysis Pate: 3/30/05 Prep Date: SeqNo. A3934 Prep Date: SeqNo. A3934 Prep Date: SeqNo. A3934 Prep Date: As no batch D: LGS-13219A Batch D: 13219 Run D: MAZ_050407A Prep Date: 3/24/05 Prep Date:	Ammonia Nitrogen	5.090	0.20	5.00	0	102%	92	110	0			
Sequet 433934 Sequet 433934 Report 433934 Report 433934 Report 433934 Report 433934 Report 433934 Report Report<	Sample ID: LCSD	Batch ID: R34132	Test Code:	AMMW	Units: mg/L		Analysis	Date: 3/30/0	5	Prep D	ate:	
Result Limit SPK value SPK Ref Val % Rec LowLimit HighLimit FPD Ref Val % Rec LowLimit HighLimit FPD Ref Val % Rec LowLimit HighLimit FPD Ref Val % Rec LowLimit HighLimit RPD Ref Val % Rec Red Val % Rec LowLimit HighLimit RPD Ref Val % Rec Red	Client ID:	,	Run ID:	WC_050330H			SeqNo:	49393				
3219A Batch ID: 13219 Test Code: As200.9X Units: µg/L Analysis Date: 4/6/05 4:01:00 PM Analysis Date: 4/6/05 4:01:00 PM Prep Date: 3/24/05 10 Result Limit SPK value SPK Ref Val % Rec LowLimit HighLimit RPD Ref Val %RPD RPDLimit Batch ID: R34124 Test Code: CODW Units: mg/L Analysis Date: 3/30/05 Analysis Date: 3/30/05 Prep Date: 3/30/05 Prep Date: 3/30/05 PResult Limit SPK Ref Val % Rec LowLimit HighLimit RPD Ref Val % RPD RPDLimit Perundado 50.03 50.03 50.0 100% 85 117 0 RPDLimit	Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD		Qual
D: LCS-132194 Batch ID: 13219 Test Code: AS200.9X Units: µg/L SeqNo: A96546 SeqNo: A963803 SeqNo: A9638	Ammonia Nitrogen	5.090	0.20	5.00	0	102%	92	110	5.09	%0	10	
SeqNo: A96546 SeqNo: A9634124 SeqNo: A96446 SeqNo: A96446 SeqNo: A963803 SeqNo:	Sample ID: LCS-13219A	Batch ID: 13219	Test Code:	AS200.9X	Units: µg/L		Analysis	: Date: 4/6/05	4:01:00 PM	Prep D	ate: 3/24/05	
19.14 10 20.0 95.7% 85 115 9 95.7% 85 115 9 9 9 9 9 9 9 9 9	Client ID:		Run ID:	INAA2_05040	7A		SeqNo:	•	"0			
19.14 10 20.0 0 95.7% 85 115 0	Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Batch ID: R34124 Test Code: CODW Units: mg/L Analysis Date: 3/30/05 Prep Date: 3/30/05 Result Wc_050330E SeqNo: 493803 RepDate: 3/30/05 RPDLimit Result Limit SPK Ref Vall RRC LowLimit HighLimit RPD Ref Val RRDLimit n Demand 50.03 50.03 50.00 0 100% 85 117 0	Arsenic	19.14	10	20.0	0	95.7%	82	115	0			
Run ID: WC_050330E SeqNo: 493803 Result Limit SPK Ref Val % Rec LowLimit RPD Ref Val %RPD RPDLimit Oxygen Demand 50.03 5.0 50.0 0 100% 85 117 0	Sample ID: LCS	Batch ID: R34124	Test Code:	СОБМ	Units: mg/L		Analysis	5 Date: 3/30/0)5	Prep D	ate: 3/30/05	
Result Limit SPK value SPK Ref Val % Rec LowLimit HighLimit RPD Ref Val %RPD RPDLimit all Oxygen Demand 50.03 50.0 0 100% 85 117 0 0	Client ID:		Run ID:	WC_050330E			SeqNo:	•	m			
50.03 5.0 50.0 0 100% 85 117	Analyte	Result	<u>Limit</u>	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD		Qual
	Chemical Oxygen Demand	50.03	5.0	50.0	0	100%	85	117	0			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyta detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Pacific Lumber-M 0503534 CLIENT:

Work Order;

Laboratory Control Spike Duplicate

QC SUMMARY REPORT

Project: 089097.	089097.120, PALCO Company	. Garage					Lab	Laboratory Control Spike Duplicate	ide ionii	Ke Duput	ale:
Sample ID: LCSD	Batch ID: R34124	Test Code: CODW	CODW	Units: mg/L		Analysis	Analysis Date: 3/30/05		Prep Date: 3/30/05	3/30/05	
Client ID:		Run ID:	WC_050330E			SeqNo:	493804				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	tef Val	%RPD R	RPDLimit	Qual
Chemical Oxygen Demand	52.23	5.0	50.0	0	104%	85	117	50.0	4.31%	10	
Sample ID: LCS-05201	Batch ID: R34070	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Analysis Date: 3/25/05 5:59:00 AM	:00 AM	Prep Date:		
Client ID:		Run ID:	ORGCMS2_050325B	50325B		SeqNo:	493012				•
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	Ref Val	%RPD F	RPDLimit	Qual
TPHC Gasoline	1,109	20	1,000	0	111%	80	120	· 0			
Sample ID: LCSD-05201	Batch ID: R34070	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Analysis Date: 3/25/05 6:29:00 AM	:00 AM	Prep Date:		
Client ID:		Run ID:	ORGCMS2_050325B	50325B		SeqNo:	493013				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	₹ef Val	%RPD F	RPDLimit	Qual
TPHC Gasoline	1,011	50	1,000	0	101%	80	120	1,110	9.21%	20	
Sample ID: LCS-05221	Batch ID: R34188	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Analysis Date: 4/1/05 4:50:00 AM	00 AM	Prep Date:		
Client ID:		Run ID:	ORGCMS2_050401B	50401B		SeqNo:	494577				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	High_imit RPD Ref Val	Ref Val	%RPD RPDLimit	RPDLimit ·	Qual
TPHC Gasoline	1,019	20	1,000	0	102%	80	120	0			
Sample ID: LCSD-05221	Batch ID: R34188	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Analysis Date: 4/1/05 5:20:00 AM	:00 AM	Prep Date:	i ai	
Client ID:		Run ID:	ORGCMS2_050401B	50401B		SeqNo:	494578				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	Ref Val	%RPD	RPDLimit	Qual
TPHC Gasoline	928.7	20	1,000	0	92.9%	80	120	1,020	9.26%	20	
							•				

ND - Not Detected at the Reporting Limit Qualifiers: J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

QC SUMMARY REPORT

Laboratory Control Spike

089097.120, PALCO Company Garage Project:

Pacific Lumber-M

0503534

Work Order; CLIENT:

Sample ID: LCS 03250504	Batch ID: R34069	Test Code: ICIONW	ICIONW	Units: mg/L		Analysis	Analysis Date: 3/25/05 3:14:46 PM	3:14:46 PM	Prep Date:		1
Client ID:		Run ID:	INIC2_050325B	æ		SeqNo:	493003				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RF	RPD Ref Val	%RPD RP	RPDLimit	Qual
Sulfate	10.23	0.50	10.0	0	102%	06	110	0			
Sample ID: LCS 03250504	Batch ID: R34067	Test Code: ICNOW	ICNOW	Units: mg/L		Analysis	Analysis Date: 3/25/05 3:14:46 PM	3:14:46 PM	Prep Date:		
Client ID:		Run ID:	INIC2_050325A	Ą		SeqNo:	492985				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	PD Ref Val	%RPD RP[RPDLimit	Qual
Nitrate (as Nitrogen) Nitrite (as Nitrogen)	1.016	0.10	1.00	0 0	102%	06	110	0			
Sample ID: LCS-13219P	Batch ID: 13219	Test Code: ICPX	ICPX	Units: µg/L		Analysis	Analysis Date: 4/5/05 3:42:00 PM	:42:00 PM	Prep Date: 3/24/05	724/05	
Client ID:		Run ID:	INICP1_050405B)5B	•	SeqNo:	496110				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit Ri	RPD Ref Val	%RPD RPI	RPDLimit	Qual
· Antimony	507.4	50	500	0	101%	85	115	0			
Barium	477.1	5.0	200	0	95.4%	85	115	0			
Beryllium	495.6	1.0	200	0.460	%0.66	82	115	0			
Cadmium	529.0	10	200	2.24	105%	85	115	0			
Chromium	495.6	, 10	200	. 2.29	98.7%	85	115	0			
Cobalt	507.0	19	200	2.03	101%	82	115	0			
Copper	478.6	10	200	0	95.7%	82	115	0			
Iron	503.4	100	200	0	101%	85	115	0			
Manganese	492.6	2.0	200	0	98.5%	82	115	0			
Molybdenum	503.3	20	200	6.13	99.4%	82	115	0			
Nickel	516.1	20	200	0	103%	82	115	0			
Silver	46.15	10	50.0	0	92.3%	85	115	0			
Vanadium	494.9	10	200	2.45	98.5%	85	115	0			
Zinc	549.0	20	200	6.90	108%	. 85	115	0			

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Pacific Lumber-M CLIENT:

0503534 Work Order:

089097.120, PALCO Company Garage

Project:

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID: LCS-13219P	Batch ID: 13219	Test Code: ICPX	ICPX	Units: µg/L		Analysis	Date: 4/8/05	Analysis Date: 4/8/05 3:08:00 PM	Prep Da	Prep Date: 3/24/05	
Client ID:		Run ID:	INICP1_050408A	18A		SeqNo:	497259	6			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	, %RPD	RPDLimit	Qual
Antimony	498.6	20	200	0	99.7%	85	115	0			
Barlum	472.5	5.0	200	0	94.5%	82	115	0			
Beryllium	468.4	1.0	200	0	93.7%	85	115	0			
Cadmium	520.3	. 01	500	0	104%	85	115	0		,	
Chromium	498.8	10	200	0	99.8%	82	115	0			
Cobalt	497.5	10	500	0	86.5%	85	115	0			
Copper	473.3	10	500	0	94.7%	82	115	0			
Iron	474.6	100	200	0	94.9%	. 85	115	0			
Manganese	454.9	2.0	200	0	91.0%	85	115	0			
Molybdenum	496.6	20	200	0	99.3%	82	115	0			
Nickel	474.7	20	200	0	94.9%	82	115	0			
Vanadium	491.6	10	200	0	98.3%	85	115	0			
Zinc	535.6	20	200	0	107%	85	115	0			
Sample ID: LCS-13223	Batch ID: 13223	Test Code: MERCW	MERCW	Units: pg/L		Analysis	Analysis Date: 3/30/05	75	Prep Da	Prep Date: 3/25/05	
Client ID:		Run ID:	CVAA1_050330A	30A		SeqNo:	493830				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	High∟imit	High∟imit RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	5.100	1.0	5.00	0	102%	82	115	0			
Sample ID: LCSD-13223	Batch ID: 13223	Test Code: MERCW	MERCW	Units: µg/L		Analysis	Analysis Date: 3/30/05	05	Prep Da	Prep Date: 3/25/05	
Client ID:		Run ID:	CVAA1_050330A	30A		SeqNo:	493831	-			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	5.120	1.0	5.00	0	102%	85	115	5.10	0.391%	20	

ND - Not Detected at the Reporting Limit Qualifiers: J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

QC SUMMARY REPORT

Laboratory Control Spike

089097.120, PALCO Company Garage

Pacific Lumber-M 0503534

Work Order:

Project:

CLIENT:

Sample ID: 1 CG 4 7 DE	Datah ID: 024220	Toot Code: NIC 1EW	NIC 1EW	l'inife: mall		doubon	Analysis Date: 414 910E			477.07	
Client ID:	Date: 10. Notable	Run ID:	WC_050412D	Oilles.		SeqNo:	497770		riep Ca	riep Date: 4/7/05	
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val) Ref Val	%RPD	RPDLimit	Qual
Nitrogen- Total Kjeldahl	10.40	1.0	10.0	0	104%	73	. 113	0			
Sample ID: LCS 4-11-05 Client ID:	Batch ID: R34338	Test Code: NKJEW Run ID: WC_050	NKJEW WC_050412D	Units: mg/L		Analysis SeqNo:	Analysis Date: 4/12/05 SeqNo: 497774		Prep Da	Prep Date: 4/11/05	•
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val) Ref Val	%RPD	RPDLimit	Qual
Nitrogen- Total Kjeldahl	10.80	1.0	10.0	0	108%	73	113	0			
Sample ID: LCS-13219A Client ID:	Batch ID: 13219	Test Code: PB200.9X Run ID: INAA2_050	PB200.9X L	Units: µg/L 5A		Analysis SeqNo:	Analysis Date: 3/25/05 5:48:00 PM SeqNo: 492795	48:00 PM	Prep Da	Prep Date: 3/24/05	,
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPC	RPD Ref Val	WRPD	RPDLimit	Qual
Lead	38.98	10	40.0	0	97.4%	85	115	0			
Sample ID: LCS	Batch ID: R34207	Test Code: PO4TOW	PO4TOW	Units: mg/L		Analysis	Analysis Date: 4/5/05		Prep Da	Prep Date: 4/5/05	
Client ID:		Run ID:	WC_050405C			SeqNo:	494813				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPC	RPD Ref Val	%RPD	RPDLimit	Qual
Total Phosphate Phosphorus	0.5208	0.020	0.500	0	104%	06	110	0	i c		
Sample ID: LCSD Client ID:	Batch ID: R34207	Test Code: PO4TOW Run ID: WC 0504	PO4TOW WC 050405C	Units: mg/L		Analysis SeqNo:	Analysis Date: 4/5/05 SeqNo: 494814		Prep Da	Prep Date: 4/5/05	
Analyte	Result	Limit	SPK value	- SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	O Ref Val	%RPD	RPDLimit	Qual
Total Phosphate Phosphorus	0.5124	0.020	0.500	0	102%	06	110	0.521	1.62%	10	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Pacific Lumber-M 0503534 089097.120, PALCO Company Garage CLIENT:

Work Order: Project:

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID: LCS-13219A	Batch ID: 13219	Test Code:	Test Code: SE200.9X	Units: ua/L		Analysis	Analysis Date: 3/28/05 6:44:00 PM	14:00 PM	Pren Dat	Pren Date: 3/24/05	
Client ID:		Run 1D:	INAA2_050328A	8 V		SeqNo:	493199		<u>.</u>		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Quai
Selentum	19.13	10	20.0	0	95.6%	85	115	0			
Sample ID: LCS-13219A Client ID:	Batch ID: 13219	Test Code: TL200.9X	TL200.9X L	Units: µg/L		Analysis SedNo:	Analysis Date: 4/4/05 2:59:00 PM	9:00 PM	Prep Dat	Prep Date: 3/24/05	
Analyte	Result	r i iii	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Qual
Thallium	20.07	10	20.0	0	100%	. 85	115	0 .			
Sample ID: LCS-13268	Batch ID: 13268	Test Code: TPHDIW	TPHDIW	Units: µg/L		Analysis	Analysis Date: 4/5/05 12:41:36 PM	41:36 PM	Prep Dat	Prep Date: 4/4/05	
Client ID:		Run ID:	ORGC7_050405A	105A		SeqNo:	496431				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) N-Tricosane	562.2 54.5	50	500	0 0	112%	67 70	120	0			
Sample ID: LCSD-13268	Batch ID: 13268	Test Code: TPHDIW	TPHDIW	Units: µg/L		Analysis	Analysis Date: 4/5/05 1:00:15 PM	0:15 PM	Prep Dai	Prep Date: 4/4/05	
Client ID:		Run ID:	ORGC7_050405A	105A		SeqNo:	496432				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPC	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) N-Tricosane	579.2	50	500	0 0	116%	67	120	562 54.5	2.97% 2.46%	15	
Sample ID: LCS-13230	Batch ID: 13230	Test Code:	Test Code: TPHDMW	Units: µg/L		Analysis	Analysis Date: 3/29/05 10:10:09 AM	1:10:09 AM	Prep Da	Prep Date: 3/28/05	
Client ID:		Run ID:	ORGC7_050329A	329A		SeqNo:	494632		,		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPC	RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22)	541.8	50	500	0 0	108%	81	156	0			
	1			.	2 - - - -	3	<u>.</u>				
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit		ds - Sp	S - Spike Recovery outside accepted recovery limits	le accepted rec	overy limits	B - Ana	B - Analyte detected in the associated Method Blank	the associate	d Method Bla	샤
J - Anai	J - Analyte détected below quantitation li	limits	R - RI	R - RPD cutside accepted recovery limits	recovery limit	ES.		•			

Pacific Lumber-M 0503534 CLIENT:

Work Order:

Project:

089097.120, PALCO Company Garage

Laboratory Control Spike Duplicate **QC SUMMARY REPORT**

				,							
Sample ID: LCSD-13230	Batch ID: 13230	Test Code:	TPHDMW	Fest Code: TPHDMW Units: µg/L		Analysis	Analysis Date: 3/29/05 10:28:39 AM):28:39 AM	Prep Da	Prep Date: 3/28/05	
Slient ID:		Run ID:	ORGC7_050329A	329A		SeqNo:	494633				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val) Ref Val	%RPD	RPDLimit	Qual
PHC Diesel (C12-C22)	576.2	20	500	0	115%	81	156	542	6.14%	15	
TPHC Motor Oil	1,170	170	1,000	0	117%	66	144	1,210	3.52%	15	
HC Motor Oil	0/۲,۲	0/L	OUU, L	D	/LL	ς.		G	90 144	90 144 09	90 144 1,210 3.52%

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

٠.	
	of
	٦

h852060

NORTH COAST	LABORATORIES LTD.	5680 West End Road · Arcata · CA 95521-9202 707-822-4649 Fax 707-822-6831
E	五名	

Chain of Custody

LABORATORY NUMBER:	TAT: ☐ 24 Hr ☐ 48 Hr ☐ 5 Day ☐ 5–7 Day STD (2–3 Wk) ☐ Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX ☐ Verbal ☐ By://_ Final Report: FAX ☐ Verbal ☐ By:/_/	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO3; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ SO ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other	SAMPLE CONDITION/SPECIAL INSTRUCTIONS
M	PRESERVATIVE	IA P P D D D D D D D D D D D D D D D D D	2) ANI (SI) (SI) (SI) (SI) (SI) (SI) (SI) (SI	8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
707-822-4649 Fax 707-822-6831	Attention: Bob Voot Results & Invoice to: PALCO Address: P.O. Box 37	Phone: 764-4268 Copies of Report to: SHN Markin E. Lay	Sampler (Sign & Print): Project Number: CB9097, 120 Project Number: CB9097, 120 Project Number: Mac Company Galage Proj	TABLIS SAMPLEID DATE TIME MATRIX*

		Global IV#	T0602300204		EDF					75.61 /2mg+ 13.00.1	CAMPI F DISPOSAI
1											
									$oxed{oxed}$	<u> </u>	
4		-	Н		_			<u> </u>	╀╌	╀╌	(
_	_		-	\neg			X	┢	╁╴	╁	
10.							Ņ	L	╄	╄	
7		┝	_			_	Š	-	╁	╁	
7	_	H				_	父			L	
							X		$oxed{\Box}$	I	
_		\		Ļ	V	∇	X	-	╀	+-	$\left\{ \left[\right] \right\}$
	ı X	ıχ	ı X	ıΛ	·×	. ^			1		1 1888

1620

m. 4

MW-3

1600

JA24/05/0820

TIME MATRIX*

1120

3/23/05

1245

5- ma

グラーグ 1 - mu

12.6

ABID

1400 1410

DATE/TIME SAMPLE DISPOSAL	WOLL Disposal of Non-Collidinated		CHAIN OF CUSTODY SEALS Y/N/NA	SHIPPED VIA: UPS Air-Ex Fed-Ex Bus Hand	
DAŢĘ/TIMĒ	0/12/2	11017	0-167		
NECEIVED BY (Sign)	Theman			_	
HECEIV.	rest	-	_		
ίψE	100		Ġ	<u> </u>	
DASFELL	15 E E	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
en & Print)	20	710			
ISHED BY (S	-	701			
RHINOL	701	an/ 11-10			
	نا	시			

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

ALL CONTAMINATED NON-AQUEOUS SAMPLES WILL BE RETURNED TO CLIENT

Table D-1
Historic Groundwater Elevation Data
PALCO Company Garage, Scotia, California

Well Number	Date of Reading	Measurement Point Elevation (feet ¹)	Depth to Groundwater (feet)	Groundwater Surface Elevation (feet)
MW-1	12/22/1999	142.64	3.50	139.14
	1/28/2000		3.34	139.30
	2/25/2000		3.21	139.43
	3/22/2000		3.42	139.22
	4/24/2000		3.43	139.21
	5/26/2000		3.51	139.13
	6/23/2000		3.58	139.06
	7/21/2000		3.63	139.01
	8/24/2000		3.57	139.07
	9/28/2000		3.60	139.04
	10/24/2000		4.02	138.62
	11/27/2000		3.66	138.98
	12/29/2000		3.64	139.00
	1/25/2001		3.31	139.33
	2/26/2001		3.18	139.46
	3/26/2001		3.53	139.11
	4/27/2001		3.52	139.12
	5/25/2001		3.52	139.12
	7/2/2001		3.54	139.06
	7/26/2001		3.55	139.09
	8/27/2001		3.59	139.05
	9/26/2001		3.65	138.99
	10/26/2001		3.80	138.84
	11/26/2001		3.31	139.33
	12/27/2001		3.27	139.37
	1/28/2002		3.49	139.15
	2/22/2002		3.39	139.25
	3/29/2002		3.48	139.16
	4/26/2002		3.68	138.96
	5/28/2002		3.56	139.08
	6/26/2002		3.56	139.08
	3/27/2003		3.31	139.33
	3/25/2004		3.48	139.16
	3/23/2005		2.97	139.67

Table D-1 Historic Groundwater Elevation Data PALCO Company Garage, Scotia, California

Well Number	Date of Reading	Measurement Point Elevation (feet ¹)	Depth to Groundwater (feet)	Groundwater Surface Elevation (feet)
MW-2	12/22/1999	137.66	5.51	132.15
	1/28/2000		5.45	132.21
	2/25/2000		5.37	132.29
	3/22/2000		5.72	131.94
	4/24/2000		5.73	131.93
	5/26/2000		5.89	131.77
	6/23/2000		6.16	131.50
	7/21/2000		6.20	131.46
	8/24/2000		6.22	131.44
	9/28/2000		6.26	131.40
	10/24/2000		6.17	131.49
	11/27/2000		6.04	131.62
	12/29/2000		5.81	131.85
	1/25/2001		5.13	132.53
	2/26/2001		5.28	132.38
	3/26/2001		5.61	132.05
	4/27/2001		5.80	131.86
	5/25/2001		6.06	131.60
	7/2/2001		6.02	131.64
	7/26/2001		6.16	131.50
	8/27/2001		6.25	131.41
	9/26/2001		6.26	131.40
	10/26/2001		6.29	131.37
	11/26/2001		5.30	132.36
	12/27/2001		5.51	132.15
	1/28/2002		5.55	132.11
	2/22/2002		5.47	132.19
	3/29/2002		5.62	132.04
	4/26/2002		5.84	131.82
	5/28/2002		5.87	131.79
	6/26/2002		6.10	131.56
	3/27/2003		5.20	132.46
	3/25/2004		5.75	131.91
	3/23/2005		4.96	132.70

Table D-1 Historic Groundwater Elevation Data PALCO Company Garage, Scotia, California

	Date of Reading	Elevation (feet ¹)	Depth to Groundwater (feet)	Groundwater Surface Elevation (feet)
MW-3	12/22/1999	138.29	5.31	132.98
	1/28/2000		5.12	133.17
	2/25/2000		5.06	133.23
	3/22/2000		5.33	132.96
	4/24/2000		5.24	133.05
	5/26/2000		5.24	133.05
	6/23/2000		5.31	132.98
	7/21/2000		5.37	132.92
	8/24/2000		5.35	132.94
	9/28/2000		5.39	132.90
	10/24/2000		5.37	132.92
	11/27/2000		5.44	132.85
	12/29/2000		5.44	132.85
	1/25/2001		4.79	133.50
	2/26/2001		5.02	133.27
	3/26/2001		5.38	132.91
	4/27/2001		5.35	132.94
	5/25/2001		5.42	132.87
	7/2/2001		5.34	132.95
	7/26/2001		5.47	132.82
	8/27/2001		5.45	132.84
	9/26/2001		5.49	132.80
	10/26/2001		5.48	132.81
	11/26/2001		5.08	133.21
	12/27/2001		5.24	133.05
	1/28/2002		5.23	133.06
	2/22/2002		5.11	133.18
	3/29/2002		5.24	133.05
	4/26/2002		5.21	133.08
	5/28/2002		5.21	133.08
	6/26/2002		5.27	133.02
	3/27/2003		4.87	133.42
	3/25/2004		5.00	133.29
	3/23/2005		4.63	133.66

Table D-1 Historic Groundwater Elevation Data PALCO Company Garage, Scotia, California

Well Number	Date of Reading	Measurement Point Elevation (feet ¹)	Depth to Groundwater (feet)	Groundwater Surface Elevation (feet)
MW-4	11/27/2000	139.74	5.23	134.51
	12/29/2000		5.07	134.67
	1/25/2001		4.73	135.01
	2/26/2001		4.55	135.19
	3/26/2001		4.95	134.79
	4/27/2001		4.78	134.96
	5/25/2001		5.21	134.53
	7/2/2001		5.03	134.71
	7/26/2001		5.22	134.52
	8/27/2001		5.20	134.54
	9/26/2001		5.22	134.52
	10/26/2001		5.24	134.50
	11/26/2001		4.83	134.91
	12/27/2001		4.64	135.10
	1/28/2002		4.90	134.84
	2/22/2002		4.73	135.01
	3/29/2002		4.89	134.85
	4/26/2002		4.97	134.77
	5/28/2002		4.86	134.88
	6/26/2002		5.02	134.72
	3/27/2003		4.51	135.23
	3/25/2004		4.85	134.89
	3/23/2005		4.37	135.37

Table D-1
Historic Groundwater Elevation Data
PALCO Company Garage, Scotia, California

Well Number	Date of Reading	Measurement Point Elevation (feet ¹)	Depth to Groundwater (feet)	Groundwater Surface Elevation (feet)
MW-5	3/25/2004	136.00	4.35	131.65
	3/23/2005		3.92	132.08
MW-6	3/25/2004	146.95	5.09	141.86
	3/23/2005		4.87	142.08
MW-7	3/23/2005	140.89	6.23	134.66
Pond	4/27/2001	134.49	2.27	132.22
Surface	5/25/2001		2.28	132.21
Elevation	7/26/2001		2.37	132.12
	8/27/2001		2.37	132.12
	9/26/2001		2.34	132.15
	10/26/2001		2.36	132.13
	11/26/2001		2.24	132.25
	12/27/2001		2.30	132.19
	1/28/2002		2.29	132.20
	2/22/2002		2.27	132.22
	3/26/2002		2.30	132.19
	3/29/2002		2.33	132.16
	4/26/2002		2.34	132.15
	5/28/2002		2.32	132.17
	6/26/2002		2.33	132.16
	3/27/2003		2.21	132.28
	3/25/2004		2.42	132.07
	3/23/2005		2.32	132.17

^{1.} Elevation Datum NAVD88 (North American Vertical Datum 1988)

			Pb^6	<5.0	NA	<20	<20	<20	<20	<20	<20	<20	<10	<10	<10	<10	NA	<5.0	NA	NA	<20	<20	<20	<20	<20	<20	<10	<10	<10	<10	<10	
			Ethanol ⁵	<5.0	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	
			Methanol ⁵	<5.0	NA	<5.0	<100	<20	<20	<50	<50	<20	<50	<50	<50	NA	NA	<50	NA	NA	<50	<50	< 20	<50	< 20	<50	<50	< 20	<50	NA	NA	
			TBA⁵	<5.0	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<10	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<10	
			$TAME^5$	<0.50	NA	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	NA	NA	< 0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	
			ETBE	<0.50	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	NA	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	
	sults	ifornia	DIPE	<0.50 ⁸	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	NA	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<1.0	<1.0	<1.0	
2	nalytical Re	Scotia, Cal	\mathbf{MTBE}^5	1.1	<100	<1.0	<0.50	0.53	0.51	05.0>	<0.50	1.1	82.0	75.0	08'0	<1.0	<1.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	
Table D-2	undwater A	any Garage, (in ug/L^1)	X ₄	9.7	14	3.2	1.9	2.2	6.2	1.7	1.9	3.0	9.2	3.46	5.04	4.2	9.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	Historic Groundwater Analytical Results	PALCO Company Garage, Scotia, California (in ug/L¹)	Та	28	130	61	5.1	11	13	3.8	3.4	13	10	6.3	81	6.3	13	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	14	PA	T4	6.3	49	2.4	1.3	1.9	7.2	1.3	1.5	3.4	6.2	2.7	4.1	3.4	4.8	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
			B4	23	65	2.8	2.5	6.8	10	4.7	6.3	11	91	10	78	10	13	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
			TPHG³	1,700	4,200	1,200	840	096	1,100	820	098	1,700	1,400	1,400	3,500	2,300	3,700	<20	<20	< 20	< 20	<20	< 20	<20	< 20	<20	< 20	< 20	< 20	< 20	< 20	
			$TPHD^2$	200	140	73	<50	<20	87	22	75	65	<20	66	170	210	540	<20	<20	<20	<50	<20	<20	<20	<20	<20	<20	<20	<50	<20	<50	
			TPHMO ²	NA^7	NA	<170	NA	<170	NA																							
			Date	12/23/99	03/22/00	06/23/00	00/82/60	12/29/00	03/26/01	07/02/01	09/26/01	12/27/01	03/29/02	06/26/02	03/27/03	03/25/04	03/23/05	12/23/99	03/22/00	06/23/00	00/82/60	12/29/01	03/26/01	07/02/01	09/26/01	12/27/01	03/53/05	06/26/02	03/27/03	03/25/04	03/23/05	
			Sample Location	MW-1														MW-2														

eers	1
Enginee	40,00
ting I	Contomists
nsult	٥
$\ddot{\circ}$	
H	

						PAI	PALCO Company Garage, Scotia, California $(\mathrm{in}\ \mathrm{ug}/\mathrm{L}^1)$	my Garage, (in ug/L ¹)	Scotia, Cali	fornia						
Sample Location	Date	${ m TPHMO}^2$	TPHD^2	TPHG³	B ⁴	T^4	E^4	X4	\mathbf{MTBE}^5	DIPE^5	ETBE	$TAME^5$	TBA ⁵	Methanol ⁵	Ethanol ⁵	Pb^6
MW-3	12/23/99	NA	910	4,400	100	18	61	34.9	<0.50	<0.50	<0.50	<0.50	5.9	<20	<20	<5.0
	03/22/00	NA	190	6,500	320	87	91	69	<200	NA	NA	NA	NA	NA	NA	NA
	06/23/00	NA	230	4,200	100	15	33	31	<1.0	<0.50	<0.50	<0.50	9.6	05>	<20	<20
	09/28/00	NA	140	6,300	160	20	30	40	<0.50	<0.50	<0.50	<0.50	9.7	<5.0	<5.0	<20
	12/29/01	NA	120	4,400	26	13	43	22	<0.50	<0.50	<0.50	<0.50	7.4	> 02	<5.0	<20
	03/26/01	NA	310	5,000	120	18	44	33	<1.0	<1.0	<1.0	<1.0	<10	<100	<10	<20
	07/02/01	NA	220	4,800	120	17	21	53	<1.0	<1.0	<1.0	<1.0	<10	<100	<10	<20
	09/26/01	NA	160	2,000	130	17	22	32	<1.0	<1.0	<1.0	<1.0	<10	<100	<10	<20
	12/27/01	NA	210	6,700	180	20	09	32.7	0.95	<1.0	<1.0	<1.0	14	<50	<5.0	<20
	03/29/02	NA	300	4,800	150	20	37	27.4	<1.0	<2.0	<2.0	<2.0	<20	<50	<5.0	<10
	06/26/02	NA	460	5,400	140	88	35	46.9	<1.0	<2.0	<2.0	<2.0	<20	<50	<5.0	<10
	03/27/03	NA	210	5,100	110	16	34	22.2	<1.0	<2.0	<2.0	<2.0	<20	<50	<5.0	<10
	03/25/04	230	230	4,400	47	14	33	8.02	<4.0	<1.0	<1.0	<1.0	<20	NA	NA	<10
	03/23/05	NA	550	4,600	78	15	31	19.6	<10	<10	<10	<10	<10	NA	NA	NA
MW-4	11/14/00	NA	290	6,500	450	44	130	110	9.7	<2.0	<2.0	<2.0	22	< 200	<20	<20
	12/29/01	NA	150	8,200	640	53	190	100	0.9	<1.0	<1.0	<1.0	83	<100	<10	<20
	03/26/01	NA	230	11,000	092	75	240	120	5.3	< 2.0	<2.0	<2.0	88	< 500	<20	<20
	07/02/01	NA	220	9,700	740	72	180	110	5.9	<5.0	<5.0	<5.0	0 \$>	<200	<20	<20
	09/26/01	NA	210	8,700	710	63	160	100	5.3	<2.5	<2.5	<2.5	<25	<250	<25	<20
	12/27/01	NA	240	11,000	920	57	160	28	9.6	<5.0	<5.0	<5.0	<20	<50	<5.0	<20
	03/29/02	NA	330	9,000	098	89	160	22	5.4	<10	<10	<10	<100	<50	<5.0	<10
	06/26/02	NA	260	10,000	069	69	160	101	5.9	<5.0	<5.0	<5.0	<20	<50	<5.0	<10
	03/27/03	NA	360	13,000	096	28	200	86	<5.0	<10	<10	<10	<100	> 02	<5.0	<10
	03/25/04	<170	360	12,000	820	70	120	71	<3.5	<1.0	<1.0	<1.0	<20	NA	NA	<10
	03/23/05	NA	006	13,000	1,100	73	150	73	<8.0	<1.0	<1.0	<1.0	2 8>	NA	NA	NA
MW-5	03/25/04	<170	<20	<20	< 0.50	< 0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<20	NA	NA	<10
	03/23/05	NA	<20	<20	< 0.50	< 0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	NA	NA	NA
MW-6	03/25/04	<170	64	<20	< 0.50	< 0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<20	NA	NA	<10
	03/23/05	NA	<20	<20	< 0.50	< 0.50	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<10	NA	NA	NA
MW-7	03/24/05	<170	200	1,500	3.5	2.6	2.0	3.23	<1.0	<1.0	<1.0	<1.0	<10	NA	NA	<10
1. ug/L: mic	ug/L: micrograms per Liter	iter														

Historic Groundwater Analytical Results

ug/L: micrograms per Liter
Total Petroleum Hydrocarbons as Motor Oil (TPHMO) and as Diesel (TPHD) analyzed in general accordance with EPA Method No. 8015B.
Total Petroleum Hydrocarbons as Gasoline (TPHG) analyzed in general accordance with EPA Method No. 8260B.

Benzene (B), Toluene (T), Ethylbenzene (E), and total Xylenes (X) analyzed in general accordance with EPA Method No. 8260B.

Methyl Tertiary-Butyl Ether (MTBE), Diisopropyl Ether (DIPE), Ethyl Tertiary-Butyl Ether (ETBE), Tertiary-Amyl Methyl Ether (TAME), Tertiary-Butyl Alcohol (TBA), Methanol, and Ethanol analyzed in general accordance with EPA Method No. 8260B.

Pb: Lead analyzed in general accordance with EPA Method No. 200.9.

NA: Not Analyzed

c: Denotes a value that is "less than" the method detection limit.

G:\1989\089097 PALCO\120\data\ COGarage-HistoricData-5-05xls\tph-hist (D-2)

	r	1	,	_						-	,	_		_	-	_
	Naphthalene	11	3.1		<0.50	< 2.0	16	8.5	23		< 2.0		< 2.0		< 2.0	
	n-Butyl- benzene	12	7.3		<0.50	<1.0	19	11	13		<1.0		<1.0		2.9	
	4-Isopropyl- toluene	99'0	2.2		<0.50	<1.0	2.0	4.5	7.0		<1.0		<1.0		<1.0	
	Sec-Butyl- benzene	2.4	4.9		<0.50	<1.0	6.1	8.5	9.1		<1.0		<1.0		<4.0	
Analysis¹ lifornia	1,2,4-Trimethyl- benzene	$< 0.50^4$	<1.0		<0.50	<1.0	8.2	4.1	2.3		<1.0		<1.0		<1.0	
Table D-3 Organic Compound y Garage, Scotia, Ca (in ug/L)²	tert-Butyl- benzene	2.0	4.6		<0.50	<1.0	8.1	11	8.2		<1.0		<1.0		7.9	
Table D-3 Historical Volatile Organic Compound Analysis ¹ PALCO Company Garage, Scotta, California (in ug/L) ²	1,3,5-Trimethyl- benzene	4.7	<1.0		<0.50	<1.0	15	4.2	14		<1.0		<1.0		<1.0	
Histo PA	n-Propyl- benzene	35	09		< 0.50	<1.0	120	120	170		<1.0		<1.0		16	W.W
	Isopropyl- benzene	16	28		<0.50	<1.0	0.2	75	110		<1.0		<1.0		7.9	undwater are chox
	2,2-Dichloro- propane	NA³	2.3		NA	<1.0	NA	6.4	17		<1.0		<1.0		<5.0	Only compounds that were detected in site groundwater are shown
	Date	12/23/99	03/25/04		12/23/99	03/25/04	12/23/99	03/25/04	03/25/04		03/25/04		03/25/04		03/24/05	unde that were
	Sample Location	MW-1			MW-2		MW-3		MW-4		MW-5		9-MM		MW-7	1 Only compo

Only compounds that were detected in site groundwater are shown.
ug/L: micrograms per Liter.
NA: Not Analyzed.
<: Denotes a value that is "less than" the method detection limit.

		Table D-4		
	Hist	oric Geochemical Par	ameters	
	PALCO C	ompany Garage, Scot	tia, California	
G 1.7	G 1.D.	DO ¹	DCO ₂ ³	ORP ⁴
Sample Location	Sample Date	(ppm) ²	(ppm)	$(mV)^5$
MW-1	03/26/01	1.04	150	54
	07/02/01	0.18	225	26
	09/26/01	0.14	200	179
	12/27/01	0.52	140	138
	03/29/02	0.16	180	102
	06/26/02	0.27	200	119
	03/27/03	1.75	190	227
	03/25/04	0.93	175	261
	03/23/05	0.68	170	-83
MW-2	03/26/01	0.80	140	98
	07/02/01	0.10	200	13
	09/26/01	0.10	140	158
	12/27/01	0.27	100	154
	03/29/02	0.67	120	98
	06/26/02	0.22	120	166
	03/27/03	0.41	100	214
	03/25/04	0.60	180	276
	03/23/05	0.70	160	-48
MW-3	03/26/01	0.97	200	0
	07/02/01	0.13	400	-10
	09/26/01	0.38	220	17
	12/27/01	0.26	200	75
	03/29/02	0.29	170	46
	06/26/02	0.61	230	50
	03/27/03	1.06	80	194
	03/25/04	0.89	250	168
	03/23/05	0.91	90	-90
MW-4	03/26/01	0.85	350	14
	07/02/01	0.08	460	11
	09/26/01	0.10	460	-0.12
	12/27/01	0.30	250	100
	03/29/02	0.46	330	45
	06/26/02	0.24	300	118
	03/27/03	0.30	300	179
	03/25/04	0.53	350	118
	03/23/05	0.66	350	-111
MW-5	03/25/04	0.65	170	263
II			1	1

03/23/05

03/25/04

03/23/05

03/23/05

MW-6

MW-7

13

285

108

-62

1.76

2.16

0.72

0.72

50

90

70

50

DCO₂: Dissolved Carbon Dioxide, field measured using a field test kit.

DO: Dissolved Oxygen, field measured using portable instrumentation.

ppm: parts per million

ORP: Oxidation-Reduction Potential (Eh) measured using portable instrumentation.

mV: millivolts.

Table D-5	Historic CAM 17 Metals in Groundwater	PALCO Company Garage, Scotia, California
-----------	---------------------------------------	--

								1	(in ug/L) ¹	3/L) ¹										
Sample Location	Date	As^2	${\rm Sb}^z$	$\mathrm{Ba}^{^{2}}$	Be^{2}	Cd ²	Cr^2	\mathbf{Co}^2	Cu ²	Fe ²	Mn^2	Mo^2	Ni^2	Ag^2	V^2	\mathbf{Zn}^{2}	${ m Pb}^2$	Hg^2	Se ²	Tl^2
MW-1	03/25/04	16	<50 ₃	43	<1.0	<10	<10	<10	<10	17,000	2,600	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
MW-2	03/25/04	<10	<50	27	<1.0	<10	<10	<10	<10	6,900	1,500	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
MW-3	03/25/04	20	<50	6.4	<1.0	<10	<10	<10	<10	14,000	2,000	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
MW-4	03/25/04	19	<20	31	<1.0	<10	<10	<10	<10	38,000	2,700	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
MW-5	03/25/04	19	<50	17	<1.0	<10	<10	<10	<10	7,000	3,200	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
9-MM	03/25/04	<10	< 20	6.2	<1.0	<10	<10	<10	<10	<100	520	<20	<20	<10	<10	<20	<10	<1.0	<10	<10
MW-7	03/24/05	40	< 20	14	<1.0	<10	<10	<10	<10	7,600	3,500	30	<20	<10	<10	<20	<10	<1.0	<10	<10
1 ng/I.micr	noti I aon amendonajim . I/ pii	J.L.																		

ug/L: micrograms per Liter As: Arsenic, Sb: Antimony, Ba: Barium, Be: Beryllium, Cd: Cadmium, Cr: Chromium, Co; Cobalt, Cu: Copper, Fe: Iron, Mn: Manganese, Mo: Molybdenum, Ni: Nickel,

Ag: Silver, V: Vanadium, Zn: Zinc, Pb: Lead, Hg: Mercury, Se: Selenium, Tl: Thallium <: Denotes a value that is "less than" the method detection limit.

Table D-6	Additional Groundwater Analytical Parameters, March 25, 2004	PALCO Company Garage, Scotia, California
-----------	--	--

				Trace company darage, ecoral, carriorina	المساع حسامهم	Scotta, S					
		Ammonia	Ammonia Chemical Oxygen Total	Total Phosphate				Total Dissolved	Dissolved	Nitrogen Total	Total
Sample	Date	Nitrogen	Demand	Phosphorous	Alkalinity	Nitrate	Sulfate	Solids	Methane	Kjeldahl	Nitrogen
Location		$(mg/L)^1$	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	$(ug/ml)^2$		
MW-1	03/25/04	1.5	39	0.69	027	$< 0.10^{3}$	3	360	3.1	NA^4	NA
MW-2	03/25/04	က	45	1.5	190	<0.10	22	260	0.076	NA	NA
MW-3	03/25/04	1.5	91	4	520	<0.10	1.9	310	8	NA	NA
MW-4	03/25/04	1.9	170	2	009	<0.10	<0.50	089	18	NA	NA
MW-5	03/25/04	1.7	100	1.9	390	<0.10	11	200	<0.010	NA	NA
9-MM	MW-6 03/25/04	<0.20	35	0.62	88	<0.10	11	140	0.01	NA	NA
MW-7	03/24/05	1.5	140	2.4	400	$<0.10^{3}$	2.1	510	2.7	3.6	3.6
1/ mar 1/	noti I non Sunomo illium . I/ wan	T :4									

^{1.} mg/L: milligrams per Liter

^{2.} ug/ml: micrograms per milliliter

^{3. &}lt;: Denotes a value that is "less than" the method detection limit. 4. NA: Not Analyzed